期刊文献+

基于错分样本的AdaBoost支持向量预选取算法

The Support Vector Pre-extracting Method Based on Error Samples AdaBoost Algorithm
下载PDF
导出
摘要 支持向量机在大样本情况下训练速度慢,支持向量预选取可以解决这个问题.AdaBoost算法重点关注错分样本,而错分样本一般都处于分类边界,支持向量就由分类边界样本构成.因此,提出基于错分样本的AdaBoost支持向量预选取算法,该算法通过AdaBoost提升过程,使得越是容易被错分的样本权值越大,从而实现支持向量的预选取,通过仿真实验验证了算法的有效性. SVM has slow training speed in the condition of a great deal of samples, and support vector Pre-extracting can solve this problem. Adaboost algorithm emphasizes error samples, and error samples are boundary samples which can construct support vector. So the support vector pre-extracting method based on error samples AdaBoost algorithm is proposed. Through AdaBoost upgrading process the algorithm gets error smples a big weight, and the support vector pre-extracting carries out, in the end the simulation experiments validate the algorithm is effective.
作者 叶菲 罗军
出处 《微电子学与计算机》 CSCD 北大核心 2013年第4期50-52,共3页 Microelectronics & Computer
关键词 ADABOOST 错分样本 SVM 支持向量预选取 AdaBoost error sample SVM Support Vector Pre-extracting
  • 相关文献

参考文献7

二级参考文献44

  • 1蔡津津,赵杰煜,王乐珩.AproPhos:基于AdaBoost方法的蛋白质磷酸化修饰预测系统[J].微电子学与计算机,2007,24(7):35-39. 被引量:2
  • 2Viola P,Jones M. Robust Real-Time Face Detection [ J]. International Journal of Computer Vision,2004,57(2) :137 - 154.
  • 3Rainer Lienhart,Jochen Maydt. An Extended Set of Haar-like Features for Rapid Object Detection[ J ]. Annual Reviews ,2002 (1) :900 -903.
  • 4VIOLAP, JONESM. Robust real time object detection [ C ]//8th IEEE International Conference on Computer Vision. Vancouver,2001.
  • 5Yoav Freund, Robert E. Schapire A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting [ J ]. Journal of computer and system sciences, 1997,55 : 119 - 139.
  • 6Stan Z. Li,ZhenQiu Zhang. FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004,26 ( 9 ) : 1112 - 1123.
  • 7Schapire R E, Singer Y. Improved boosting using confidence-rated predictions. Machine Learning, 1999,37 ( 3 ) :297 - 336.
  • 8Sochman J, Matas J. Waldboost-learning for time constrained sequential detection[ C ]//Proc, of Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, June 2005,2:150 - 157.
  • 9Pavlovic V, Garg A. Efficient Detection of Objects and Attributes using Boosting. IEEE Conf. Computer Vision and Pattern Recognition. 2001.
  • 10ViolaP,Jones M. Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade. Mitsubishi Electric Research Lab, Cambridge, MA. 2001.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部