期刊文献+

在线社会网络用户的信息分享行为预测研究 被引量:2

Information sharing behavior prediction of online social network users
下载PDF
导出
摘要 在线社会网络中信息的传播路径包含着用户对内容、来源等的偏好信息,研究运用信息的传播路径来预测用户信息分享行为的方法。基于传播路径的信息过滤能力研究了信息在网络中的传播过程和信息传播路径的转换方法。运用基于关联规则的分类算法对在线社会网络中的信息分享行为进行预测。以新浪微博为例对微博用户的转发行为进行了预测,结果表明该方法对在线社会网络中的活跃用户的信息分享行为的预测具有较好的效果。 Information transmission paths in online social networks(OSN) contain users' preferences as information content and source.This paper proposed a method based on the information paths to predict the information sharing behavior of OSN users.Firstly studied the transform method of the information transform process to information transform paths based on information filtrate ability of these paths.Then,used an association rules based classification algorithm to predict the information sharing behavior of users.It used an empirical research of Sina Weibo to test the prediction method.Results show that it works well when predict the information sharing behavior of active uses on OSNs.
出处 《计算机应用研究》 CSCD 北大核心 2013年第4期1017-1020,共4页 Application Research of Computers
基金 国家教育部人文社会科学研究基金资助项目(12YJCZH126 11YJC860057) 国家自然科学基金资助项目(70901023)
关键词 在线社会网络 信息分享行为 预测 online social network(OSN) information sharing behavior prediction
  • 相关文献

参考文献14

  • 1MISLOVE A, MARCON M, GUMMADI K P, et al. Measurement and analysis of online social networks [ C ]//Proc of the 7th ACM SIG- COMM Conference on Internet Measurement. New York:ACM Press, 2007.
  • 2BORGE-HOLTHOEFER J, RIVERO A, GARCIA I, et al. Structural and dynamical patterns on online social networks : the Spanish may15thmovement as a case study [J]. PlOS Ono, 2011,6 (8): e238823.
  • 3WILLIAMSON D A. The rush to social networks [ EB/OL]. (2009). http ://www. emarketer, corn/Article, aspx?'R = 1006910.
  • 4Nielson Online Report. Social networks & blogs now 4th most popular online activity, ahead of personal email [ EB/OL]. ( 2009 ). http ://ti- nyurl, com/cfzjh.
  • 5WALTHER J B,CARR C T, CHOI S S W,et al. Interaction of inter- personal, peer, and media influence sources online [ C ]//Proc of A Networked Self: Identity,Community, and Culture on Social Network Sites. 2010.
  • 6WU Shao-mei,HOFMAN J M,MASON W A,et al. Who says what to whom on twitter [ C ]//Proc of the 20th International Conference on World Wide Web. New York:ACM Press,2011.
  • 7GARG R,SMITH M D,TELANG R. Measuring information diffusion in an online community [ J]. Journal of Management Information Systems,2011,28 (2) : 11 - 38.
  • 8KWAK H,LEE C,PARK H,et al. What is twitter, a social network or a news media [ C ]//Proc of the 19th International Conference on World Wide Web. Raleigh : ACM Press,2010.
  • 9WENG Jian-shu, LIM E P, JIANG Jing,et aL Twitterrank: finding topic-sensitive influential twitterers[ C]//Proc of the 3rd ACM Inter- national Conference on Web Search and Data Mining. New York:ACM Press .2010.
  • 10BAKSHY E,ROSENN I, MARLOW C, et al. The role of social net- works in information diffusion [ C ]//Proc of the 21st International Conference on World Wide Web. New York: ACM Press,2012:519- 528.

二级参考文献11

  • 1欧健文,董守斌,蔡斌.模板化网页主题信息的提取方法[J].清华大学学报(自然科学版),2005,45(S1):1743-1747. 被引量:70
  • 2周立柱,林玲.聚焦爬虫技术研究综述[J].计算机应用,2005,25(9):1965-1969. 被引量:155
  • 3Pieter N, Michiel H. Mining Twitter in the cloud: A case study [C]// Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing, CLOUD 2010. Miami, USA: IEEE Computer Society, 2010: 107 -114.
  • 4Abraham R, Martinez T. Twitter: Network properties analysis [C]// Proceedings of the CONIELECOMP 2010 20th International Conference on Electronics Communications and Computers. Cholula Puebla, Mexico: IEEE Computer Society, 2010: 180 - 184.
  • 5wenE,SunV.新浪微博研究报告[Z/OL].(2011-05-20),http://www.techweb.com.cn/data/2011-02-25/916941.shtml.
  • 6HAN Ruixia. The influence of microblogging on personal public participation [C]// Proceedings of the 2010 IEEE 2nd Symposium on Web Society, SWS 2010. Beijing, China: Association for Computing Machinery, 2010:615 -618.
  • 7KANG Shulong, ZHANG Chuang. Complexity research of massively microhlogging based on human behaviors [C]//2010 2nd International Workshop on Database Technology and Applications, DBTA2010 Proceedings. Wuhan, China: IEEE Computer Society, 2010: 1 -4.
  • 8WANG Rui, JIN Yongsheng. An empirical study on the relationship between the followers' number and influence of microblogging [C]// Proceedings of the International Conference on E-Business and E-Government, ICEE 2010. Guangzhou, China: IEEE Computer Society, 2010: 2014- 2017.
  • 9Westman S, Freund L characters or less : Genres on interaction in 140 twitter [C]//IIiX 2010 Proceedings of the 2010 Information Interaction in Context Symposium. New Brunswick, USA: Association for Computing Machinery, 2010:323 - 326.
  • 10姚峰.Java平台中Base64编码/解码算法的改进[J].计算机应用与软件,2008,25(12):164-165. 被引量:10

共引文献119

同被引文献11

  • 1DAVID Liben-Nowell,KLEINBERG Jon M."Tracing Information Flow on a Global Scale Using Internet Chain-letter Data[C] //Proceedings of the National Academy of Sciences,2008,105 (12):4633-4638.
  • 2KSCHISCHANG F,MEMBER S,FREY B J,et al.Factor Graphs and the Sum-Product Algorithm[J].IEEE Transactions on Information Theory,2001,47(2):498519.
  • 3TAN Chenhao.Social Action Tracking via Noise Tolerant Time-varying Factor Graphs[C] //Proceedings of the 16th ACM SIGK-DD International Conference on Knowledge Discovery and Data Mining.New York,NY,USA:ACM,2010:1049-1058.
  • 4SONG Xiaodan.Information Flow Modeling Based on Diffusion Rate for Prediction and Ranking[C].Proceedings of the 16th International Conference on World Wide Web.New York,NY,USA:ACM,2007:191-200.
  • 5LI Yiping,LENG Zhaonan,WANG Hao.ReTweet:Modeling and Predicting Tweets Spread Using an Extended Susceptible-InfectedSusceptible Epidemic Model[C] //Database Systems for Advanced Applications SE,2013:454-457.
  • 6YANG Zi.Understanding Retweeting Behaviors in Social Networks[C] //Proceedings of the 19th ACM International Conference on Information and Knowledge Management,New York,NY,USA:ACM,2010:1633-1636.
  • 7赵丽,袁睿翕,管晓宏,贾庆山.博客网络中具有突发性的话题传播模型[J].软件学报,2009,20(5):1384-1392. 被引量:35
  • 8廉捷,周欣,曹伟,刘云.新浪微博数据挖掘方案[J].清华大学学报(自然科学版),2011,51(10):1300-1305. 被引量:120
  • 9汪秉宏,周涛,周昌松.人类行为、复杂网络及信息挖掘的统计物理研究[J].上海理工大学学报,2012,34(2):103-117. 被引量:20
  • 10张旸,路荣,杨青.微博客中转发行为的预测研究[J].中文信息学报,2012,26(4):109-114. 被引量:70

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部