期刊文献+

云计算环境下基于需求预测的虚拟机节能分配方法研究 被引量:9

Energy Efficient Allocation of Virtual Machines in Cloud Computing Environments Based on Demand Forecast
下载PDF
导出
摘要 在云计算环境中,大量用来处理各种用户需求的虚拟机分布在具有相异物理配置的主机上.维持这些主机和配套设施的正常运转需要消耗大量的能源.为了控制云计算环境的运营支出并提高其能源利用率,提出了基于需求预测的虚拟机节能分配方法.首先,由于用户需求通常具有时变性且符合一定的季节性模型,所以利用Holt-Winters指数平滑法对后续周期的需求进行预测.其次,根据预测结果,利用修改后的背包算法在主机之间合理地分配虚拟机.最后,利用自优化模块对预测模型中的参数进行自适应更新,并确定合适的预测周期.实验表明该方法可以有效减少主机的开关机操作次数,从而降低云计算环境中无谓的能源消耗. In cloud computing environments, demands from different users are often handled on virtual machines (VMs) which are deployed over plenty of hosts. Huge amount of electrical power is consumed by these hosts and auxiliary infrastructures that support them. However, demands are usually time-variant and of some seasonal pattern. It is possible to reduce power consumption by forecasting varying demands periodically and allocating VMs accordingly. In this paper, we propose a power-saving approach based on demand forecast for allocation of VMs. First of all, we forecast demands of next period with Holt-Winters' exponential smoothing method. Second, a modified knapsack algorithm is used to find the appropriate allocation between VMs and hosts. Third, a self-opti- mizing module updates the values of parameters in Holt-Winters' model and determines the reasonable forecast frequency. We carried out a set of experiments whose results indicate that our approach can reduce the frequency of switching on/off hosts. In comparison with other approaches, this method leads to considerable power saving for cloud computing environments.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第4期778-782,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60873230 61073021)资助 上海市科学技术委员会项目(10511501503 09511502603 11511500102)资助
关键词 云计算 能源消耗 需求预测 虚拟机分配 背包算法 自优化 cloud computing power consumption demand forecast allocation of virtual machines modified knapsack algorithm self-optimization
  • 相关文献

参考文献18

  • 1Zhao Chun-yan. Research of job scheduling algorithms in cloud computing environment [ D]. Beijing : Beijing Jiaotong University, 2009.
  • 2U. S. Environmental Protection Agency. Report to congress on server and data center energy efficiency [R]. Public Law,2007 : 109-431.
  • 3Paul Goodwin. The holt-winters approach to exponential smoothing : 50 years old and going strong[ J]. Foresight,2010, Fall :30-33.
  • 4AMAZON. Amazon EC2 pricing [EB/OL ]. http ://aws. amazon. com/ec2/oricim,J. 2011 - 10 - 10.
  • 5William E Walsh, Gerald Tesauro, Jeffrey O Kephart, et al. Utility functions in autonomic systems [ C ]. Proceedings of I st IEEE Inter- national Conference on Autonomic Computing,2004:70-77.
  • 6BAIDU. cloudsim [ EB/OL]. http://baike, baidu, corn/view/ 3652473. htm,2011-10-10.
  • 7WIKIPEDIA. Mean absolute percentage error[ EB/OL] . http://en. wikipedia, org/wiki/Mean_absolute_percentage_error, 2011 - 10-10.
  • 8Gerald Tesauro, Rajarshi Das, William E Walsh, et al. Utility- function-driven resource allocation in autonomic systems [ C ]. Pro- ceedings of the Second International Conference on Autonomic Computing ( ICAC'05 ) ,2005.
  • 9Holt-winters'exponential smoothing with seasonality[EB/OL]. http://www, cec. uchile, el/- fbadilla/Helios/referenci-as/0fHolt Winters Season. pdf,2011-10-10.
  • 10Rodrigo N Calheiros,Rajiv Ranjan,Anton Beloglazov ,et al. Cloud- Sim : a toolkit for modeling and simulation of cloud computing en- vironments and evaluation of resource provisioning algorithms [ J ]. Software: Practice and Experience ,2011,41 ( 1 ) :23-50.

二级参考文献23

  • 1蒋成林.霍尔特指数平滑法参数的优选[J].统计教育,2004(4):13-15. 被引量:14
  • 2陈鹏,孙全欣.基于灰色马尔柯夫过程的铁路客运量预测方法研究[J].铁道运输与经济,2005,27(4):65-67. 被引量:19
  • 3张丽,闫世锋.Holt-Winters方法与ARIMA模型在中国航空旅客运输量预测中的比较研究[J].上海工程技术大学学报,2006,20(3):280-283. 被引量:17
  • 4Wikipedia. Cloud computing [EB/OL] .http://en.wikipedia.org/ wiki/Cloud_computing,2010-10-30/2010-11-01.
  • 5NIST. Cloud computing [EB/OL] .http://csrc.nist. gov/groups/ SNS/cloud-computing/,Modified 2010-08-22/2010-11-01.
  • 6Amazon.Amazon elastic compute cloud (Amazon EC2) [EB/ OL].http://aws.amazon.com/ec2,2008-12-21/2010- 10-01.
  • 7Nimbus Project.Science Clouds[EB/OL].http://www. scienceclouds.org/,2010-11-10.
  • 8OpenNebula.org. OpenNebula project [EB/OL]. http://www. opennebula, org/d oku.php/,2 010-10-15.
  • 9Ryan Paul.Eucalyptus in the cloud: researchers commercialize OSS proj ect[EB/OL].http://arstechnica.com/open-source/news/ 2009/04/researchers-to-commercialize-open-source-eucalyptusproject.ars,2009-04-30/2010- 10- 10.
  • 10Daniel Nurmi,Rich Wolski,Chris Grzegorczyk, et al.The eucalyptus open-source cloud-computing system[C].Shanghai:Proceedings of the 10th IEEE/ACM International Symposium on Cluster Computing and the Grid,2009:124-131.

共引文献36

同被引文献61

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部