期刊文献+

一种人工免疫的自适应谱聚类算法 被引量:6

An Adaptive Spectral Clustering Algorithm Based on Artificial Immune
下载PDF
导出
摘要 聚类分组数的自动确定是谱聚类算法中一个亟待解决的问题.针对谱聚类算法聚类分组数的获取问题,提出一种基于人工免疫的自适应谱聚类算法.该算法通过模拟抗体的克隆选择机制和免疫系统的初次免疫应答、二次免疫应答机制,实现了数据样本聚类分组数的自动调整,解决了聚类算法需要人工输入聚类分组数的弊端.并分别在线性模拟数据、非凸模拟数据和UCI数据集上验证了算法的可行性、算法在非凸数据集上的优势以及算法的有效性.实验结果表明该算法可以自动获取正确的聚类分组数,提高聚类效果,减少达到全局最优解时的迭代次数,具有较高的稳定性. To ascertain the number of clustering groups automatically is a problem which is to be solved urgently in the spectral clustering algorithm. According to the number of clustering groups problem of the spectral clustering algorithm, this paper presents an adaptive spectral clustering based on artificial immune. The algorithm simulates antibodies' clone selection mechanism, primary response, secondary immune response mechanism. Finally the clustering numbers of sample data can be adjusted automatically and the algorithm solves the malpractice that group number is inputted by hand. The paper validates the feasibility, validity of the algorithm on linear simulation data, non convex data and UCI datasets. The experiment results show that the algorithm can ascertain the number of clustering groups automatically, the clustering results are ultimately improved, and the iteration number is reduced when it reaches the global optimal solution. The algorithm has a higher stability.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第4期856-859,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61070077)资助 山西省自然科学基金项目(2010011020-2)资助 山西省自然科学青年基金项目(2011021013-3)资助 太原理工大学校基金项目(K201021)资助
关键词 谱聚类 人工免疫 克隆 自适应 spectral clustering artificial immune clone adaptive
  • 相关文献

参考文献4

二级参考文献53

  • 1司文武,钱沄涛.一种基于谱聚类的半监督聚类方法[J].计算机应用,2005,25(6):1347-1349. 被引量:11
  • 2FiEDLER M. Algebraic connectivity of graphs[J]. Czechoslovak Mathematical Journal, 1973, 23(98) :298-305.
  • 3LUXBURG von U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4) :395-416.
  • 4NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[ C ]//Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2002.
  • 5SHI J, MALIK J. Normalized cuts and image segmentation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
  • 6KANNAN R, VEMPALA S, VETFA A. On clusterings-good, bad, and spectral[C]//Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science. [ S. l. ]: IEEE Press, 2000.
  • 7HUANG L, YAN D, JORDAN M. Spectral clustering with perturbed data[ C]// Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2008: 705- 712.
  • 8CHI Y, SONG X, ZHOU D. Evolutionary spectral clustering by incorporating temporal smoothness[ C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California: ACM Press, 2007: 153-162.
  • 9ZELNIK MANOR L, PERONA P. Self-tuning spectral clustering[ C]// Advances in Neural Information Processing Systems (NIPS). Cambridge, MA: MIT Press, 2004.
  • 10DHILLON I, GUAN Y, KULIS B. Kernel k-means, spectral clustering and normalized cuts[C]//Proceedings of the 10th International Conference on mining. Seattle, WA, USA: Knowledge Discovery and Data ACM Press, 2004.

共引文献201

同被引文献58

  • 1李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:401
  • 2刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 3李阳阳,焦李成.量子克隆多播路由算法[J].软件学报,2007,18(9):2063-2069. 被引量:10
  • 4I Strategy and P Unit. Itu internet reports 2005: The interact of things [ R ]. Geneva: International Telecommunication Union (ITU), 2005.
  • 5L Sanchez, et al. SmartSantander: The meeting point between Fu- ture Internet research and experimentation and the smart cities [ C]. In Future Network & Mobile Summit (FutureNetw), 2011: 15-17.
  • 6R J Miller, Y Yang. Associat ion rules over interval data[ C]. In : PeckhamJ ed. Proceedings of the ACM S IGMOD Int ernat ional Conferenceon Management of Data. T ucson, Arixona: ACM Press, 1997:452-461.
  • 7Sharma, Preeti, Parvat, J Thaksen. Network Log Clustering Using K- Means Algorithm [ C ]. Proceedings of the Third International Conference on Trends in Information, Telecommunication and Com- puting, 2013:115-124.
  • 8T TQuan, et al. Automatic generation of ontology for scholarly se- mantic web[ C ]. MIn Proceedings of the 3rd International Semantic Web Conference. H iroshima Japan. 2004 : 726-740.
  • 9Z Wang. Quantitative Association Rules Mining Method Based on Trapezium Cloud Model[ C ]. Database Technology and Applica- tions (DBTA), 2010 2nd International Workshop on. IEEE, 2010:1-4.
  • 10LEE Z Y, PONNAMBALAM S G. Optimisation of mul- tipass tuming operations using PSO and GAAIS algorithms E J]- International Journal of Production Research, 2012, 50(22) :6499-6518.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部