期刊文献+

复杂场景下的实时运动目标检测 被引量:2

Real-time Motion Detection in Complex Scenes
下载PDF
导出
摘要 提出一种改进的混合高斯模型算法对复杂场景中的运动目标进行实时检测.该算法首先在模型更新过程中提出一种相似模型调整策略,通过对模型值接近的模型的均值、权值、学习速率等进行自动调整,从而使算法更快地适应光照变化;然后基于尺度不变性局部三值模式纹理特征对检测结果进行校验,以快速有效地消除运动目标的阴影和光照渐变及突变的影响;最后设计一种图像尺度变换方法以提高算法的实时性.与现有算法相比,本文提出的方法能更好地在复杂背景中稳定检测运动目标,同时显著提高目标检测的效率.试验结果验证了本算法的有效性. An improved Gaussian Mixture Model algorithm was proposed for real-time motion detection in complex scenes. First, the mean values, weight and learning rate of similar models would be adjusted automatically during models update. So the algorithm could adapt to illumination change faster. Second, scale invariant local ternary pattern feature was used to verify the candidate foreground points to get rid of the moving shadow and illumination variation. Finally, an image scale transformation method was designed to improve the efficiency of the algorithm. Compared with existing state-of-the-art algorithms, the proposed method could extract the moving object in complex scenes more effective and efficient. Experiments have shown the effectiveness of the proposed method.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第4期915-920,共6页 Journal of Chinese Computer Systems
基金 广东省科技计划项目(2007B020706006 2007B020715001)资助
关键词 混合高斯模型 背景建模 运动检测 相似模型调整 gaussian mixture model background modeling motion detection similar models adjustment
  • 相关文献

参考文献2

二级参考文献12

  • 1Chris Stauffer, Eric W, Grimson L. Learning patterns of activity using real-time tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 747-757.
  • 2Kaewtrakulpong Pakorn, Bowden Richard. An improved adaptive background mixture model for real-time tracking with shadow detection[ C ]//Proceedings of the 2nd European Workshop Based on Advanced Video-based Surveillance Systems Providence, USA: kluwer Academic Publishers, 2001 : 149-158.
  • 3Zoran Zivkovic. Recursive unsupervised learning of finite mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (5) : 651-656.
  • 4Lee Dar-Shyang. Effective gaussian mixture learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5) : 827-832.
  • 5Michael Harvine, Gaile Gordon, John Woodfill. Foreground segmentation using adaptive mixture models in color and depth [ C ]//IEEE Workshop on Detection and Recognition of Events in Video. New York : Computer Science Press, 2001 : 3-11.
  • 6Thongkamwitoon T, Aramvith S, Chalidabhongse T H. An adaptive real-time background subtraction and moving shadows detection[ C ]//IEEE International Conference on Multimedia and Expo. New York: IEEE, 2004, 2: 1459-1462.
  • 7Chao Yuyan, Kenji Suzuki. A run-based two-scan labeling algorithm[J]. IEEE Intelligent Transaction on Image Processing, 2008, 17(5) : 749-756.
  • 8Han Hongzhe, Wang Zhiling. Adaptive background modeling with shadow suppression [ EB/OL ]. [ 2008-12-04 ]. http:// ieeexplore, ieee. org/stamp, jsp? arnumber =01252045.
  • 9Chris Stauffer,Grimson W E L. Adaptive background mixture models for real-time tracking [ A ]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition [ C ], Ft. Collins, CO, USA,1999:246 -252.
  • 10胡师彦.基于视频监控系统的运动监测和报警[J].石家庄铁道学院学报,2002,15(4):6-10. 被引量:5

共引文献41

同被引文献5

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部