期刊文献+

基于K-SVD算法改进BayesShrink小波阈值去噪

Using K-SVD algorithm for improving performance of BayesShrink image denoisng techniques
下载PDF
导出
摘要 提出了一种基于BayesShrink小波阈值去噪算法和稀疏字典学习算法(K-SVD)相结合的图像去噪算法。针对现有的小波去噪算法只处理了细节子带系数,而没有处理近似子带的系数最终导致去噪效果带有局限性的问题,在实际应用中,噪声不仅改变了细节子带系数同时还改变了近似子带的系数,提出了使用K-SVD算法处理图像小波变换近似子带系数以改进现有小波阈值图像去噪算法的效果的缺陷,仿真实验结果表明:改进后的算法能够有效的去除图像的高斯噪声,提高图像的峰值信噪比,明显的改善图像的视觉效果。 A new method based on K- SVD and wavelel transfoml is presented tbr image noise reduction. In the existing wavelet thresholding methods, the final noise reduced image has limited improvement. It is due to keeping the approximate coefficients of the image unchanged. These coefficients have the main information of the image. Since noise affects both the approximate and detail coefficients, in this research, the K- SVD technique for noise reduction is applied on the approximation band to alleviate the deficiency of the existing wavelet thresholding methcds. The proposed method was applied on several standard noisy inmges and the results indicate superiority of the proposed method over the existing wavelet - based image denoising, BayesShrink, Fuzzy - Shrink, and AntShrink method, the proposed method is obviously superior both in vision and in PSNR.
出处 《激光杂志》 CAS CSCD 北大核心 2013年第2期30-31,共2页 Laser Journal
基金 科技部国际科技合作项目(No.2009DFA12870) 教育部促进与美大地区科研合作与高层次人才培养项目
关键词 小波变换 字典学习算法 近似子带系数 K-SVD 图像去噪 wavelet transform dictionary eaming approximation band coefficients K- SVD image denoising
  • 相关文献

参考文献14

  • 1H. Xie, L. Pierce, and F.T. Uhdv. Statist al properties of lcGithmically tramsfonnedl speckle[ J ]. IEEE Trans. Geosci. Remote Sens, 2002, dO(3 ) : 721 - 727.
  • 2T. Tatizen. Princilml neighlN)rh(xxl dictionaries for nonhx'al means inmge denoising[ J ]. FEE Tranctions on Image Pr(x.esing, 2009, 18 (12):2649- 2660.
  • 3M. NiklJur, H. Hassanpour. Using hflhsion equations for improving perfrmanee f wavelet - bat image denoising techniques [ J]. lET Image Processing, 2010,4(6) :452 - 462.
  • 4S. Chang, B. Yu, M. Vettei'li. Adam*tire wavelet thresholding for image denoising and compression [ J ]. IEEE Transactions on hnage Processing, 2000,9 (9) : 1532 - 1546.
  • 5Nasir Rajipoot, IrfanButt. A multiresolution frunework for local simihu'ily based image denoising [ J ]. Pattem Recoognition, 2012, ( 45 ) : 2938 -2951.
  • 6R. Grilbnvd. M. Nielsen. Spmrse approximations in signal mid image ptocessing[ J ]. Signal Ptocessing, 2006, B6( 2, ) : dl 5 - 416.
  • 7M. Protter, M. Elad. hnage seluence denoising via sparse and redundanl represenlalions[ J ]. I EEE Trmlsaclions on Image Pnecing, 2009, 18 (1):27-35.
  • 8M. ElM, M. Ahamn. Image denoising via spruce md redundmlt represenlalions over letmll dictionm'ies [ J]. IEF, IEEEransalions on lnuNe Prx.essing, 2006, 15(12) :3736 - 3745.
  • 9武海洋,王慧,程宝琴.基于最小Bayes风险的小波域局部自适应图像去噪[J].计算机应用,2010,30(A12):3238-3240. 被引量:5
  • 10Jankd Saheedi, Mohanullad Ho.,m Moidi und Karim Faez. A New Wavelet- Iased Ftuzzy Single mid Multi - chmmel hnage Denoising [J].Image and Visiun Computing,2010, (28) : 1611 - 1623.

二级参考文献33

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部