摘要
设θ(t)是连续模,T是带有θ型Calderón-Zygmund核的奇异积分算子。若w Ap,1<p<$,利用外推原理和空间分解理论,我们得到了T在加权Morrey空间上的有界性,即T是Lp,κ(w)到Lp,κ(w)有界的。
Let θ(t) be a modulus of continuity.Suppose T is a singular integral operator with θ-type Calderón-Zygmund kernel.If w Ap,1p$,by using the extrapolation theory and decomposition of space,we obtain that the operator T is bounded in weighted Morrey space.That is,T is bounded from Lp,,κ(w) to Lp,κ(w).
出处
《华东交通大学学报》
2013年第1期37-40,共4页
Journal of East China Jiaotong University
基金
国家自然科学基金项目(11161021)