摘要
为了解决雷达自适应处理中由于杂波的非均匀所带来的性能恶化问题,提出了一种基于极化特征知识的非均匀复合高斯杂波训练数据选择方法.该方法对训练数据单元进行极化散射矩阵的最大似然估计,然后计算每个估计值与先验极化知识的误差,以此作为区分野值的特征,从非均匀杂波中去除野值得到均匀的训练数据.仿真结果表明,该方法在野值杂波比较低时仍能够有效地去除野值,改善了杂波协方差矩阵的估计性能.
To solve the problem of performance degradation due to nonhomogeneous clutter in adaptive radar processing,a new training data selector in non-homogeneous compound-Gaussian clutter based on polarization knowledge was proposed.The polarization scatting matrix of every training sample was estimated using maximum likelihood estimation(MLE) method,and then the error between the estimation and prior polarization knowledge was used to remove outliers from training data.The performance of the knowledgebased algorithm was analyzed on simulated radar data.The results show that the new data selector removes outliers effectively when outlier-clutter ratio is low and achieves a satisfactory performance level for the estimation of clutter covariance matrix.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2013年第3期28-32,共5页
Journal of Harbin Institute of Technology
基金
山东省自然科学基金资助项目(ZR2012FQ007)
哈尔滨工业大学创新基金资助项目(HIT.NSRIF.2011118)
关键词
极化
数据选择
最大似然估计
先验知识
polarization
data selection
maximum likelihood estimation
prior knowledge