期刊文献+

基于优化内积模型的压缩感知快速重构算法 被引量:2

A Fast Compressed Sensing Reconstruction Algorithm Based on Inner Product Optimization
原文传递
导出
摘要 针对压缩感知理论中现有重构算法耗时过长的问题,提出一种基于优化内积模型的快速重构算法,且理论推导了迭代停止条件.该算法在重构的每次迭代过程中,仅在第1次迭代时采用传感矩阵与余量的矩阵求内积运算,在后续的迭代中则通过向量运算代替矩阵求内积的运算,迭代停止时只需进行一次最小二乘法即可获得重构信号.仿真结果表明,提出的快速重构算法在保证重构信号性能的基础上,大大减少了重构时间. The existing reconstruction algorithms in compressed sensing (CS) theory commonly cost too much time. A novel reconstruction algorithm based on inner product optimization is proposed to reduce reconstruction time. And also stopping criterion is derived from theory. The proposed algorithm computes the inner product of measurement matrix and the residual only in the first iteration during the reconstruc- tion process. In the remaining iterations, the inner product of vectors instead of matrices is calculated. Then least square calculation is done only once to reconstruct the signal after iterations stopped. Experi- ments show that the proposed algorithm reduces the reconstruction time largely without degrading the quality of the signal.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2013年第1期19-22,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61001119) 国家科技重大专项项目(2012ZX03005008-001)
关键词 优化内积 压缩感知 重构算法 inner product optimization compressed sensing reconstruction algorithm
  • 相关文献

参考文献9

  • 1Donoho D L. Compressed sensing[ J]. IEEE Transaction on Information Theory, 2006, 52(4) : 1289-1306.
  • 2Cand6s E. Compressive sampling[J]. Proceedings of the International Congress of mathematicians, 2006 ( 3 ) : 1433-1452.
  • 3李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:205
  • 4Donoho D L. For most large underdetermined systems of linear equations, the minimal 1 norm solution is also the sparsest solution[ J ]. Communications on Pure and Ap- plied Mathematics, 2006, 59(6): 797-829.
  • 5Chen S S, Donoho D L, Saunders M A. Atomic decom- position by basis pursuit [ J]. SIAM Journal on Scientific Computing, 1998, 20(1 ) : 33-61.
  • 6Stephane G. Mallat, Zhang Zhifeng. Matching pursuit in a time-frequency dictionary [ J]. IEEE Traus Signal Pro- cessing, 1993, 41(12) : 3397-3415.
  • 7Tropp J, Gilbert A. Signal recovery from random meas- urements via orthogonal matching pursuit [ J 1. Transac- tions on Information Theory, 2007, 53 (12) : 4655-4666.
  • 8Deanna Needell, Versbynin R. Uniform uncertainty prin- ciple and signal recovery via regularized orthogonal matc- hing pursuit [ J . Foundations of Computational Mathe- matics, 2009, 9(3): 317-334.
  • 9程云鹏,张凯院,徐仲,等.矩阵论[M]124页.西安:西北工业大学出版社,2007.

二级参考文献61

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 5Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 6Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 7Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 8Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.
  • 9Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219.
  • 10Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985.

共引文献205

同被引文献9

  • 1Cheng Mingming, Zhang Guoxin, Mitra N G, et al. Global contrast based salient region detection[C]//CVPR 2011. Washington: IEEE Computer Society, 2011: 409-416.
  • 2Jia Xu, Lu Huchuan, Yang Minghsuan, et al. Visual tracking via adaptive structural local sparse appearance model//CVPR 2012. Providence: IEEE Computer Society, 2012: 1822-1829.
  • 3Hamood M T, Boussakta S. Fast Walsh hadamard Fourier transform algorithm[J]. IEEE Trans on Signal Processing, 2011, 59(11): 5627-5631.
  • 4Korman S, Avidan S. Coherency sensitive hashing[C]//ICCV 2011. Barcelona: Institute of Electrical and Electronics Engineers, 2011: 1607-1614.
  • 5Giachetti A, Asuni N. Real time artifact free image upscaling[J]. IEEE Trans on Image Processing, 2011, 20(10): 2760-2768.
  • 6Avidan S, Shamir A. Seam carving for content aware image resizing[J]. ACM Trans on Graphics, 2007, 26(3): 1-9.
  • 7何雪云,宋荣方,周克琴.基于压缩感知的OFDM系统稀疏信道估计新方法研究[J].南京邮电大学学报(自然科学版),2010,30(2):60-65. 被引量:52
  • 8李志林,陈后金,姚畅,李居朋.基于谱投影梯度追踪的压缩感知重建算法[J].自动化学报,2012,38(7):1218-1223. 被引量:11
  • 9吴君钦,李宁,王加莉.基于匹配追踪算法阈值改进的MIMO-OFDM信道估计研究[J].现代电子技术,2018,41(1):9-12. 被引量:5

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部