期刊文献+

成本感知的云服务请求调度 被引量:2

Cost-Aware Cloud Service Request Scheduling
原文传递
导出
摘要 提出了一种基于动态重用的成本感知的云服务请求调度算法,不仅能够根据当前的系统负载状况和云服务请求的可分性特征,按需租用和重用虚拟资源,实现云服务动态请求的优化调度,而且还能在满足服务等级协议约束的同时,最小化虚拟资源租赁成本,增加云服务供应商的利润.仿真实验表明,提出的算法的资源利用率、运营利润均高于用以对比的调度算法. With help of a new cost - aware cloud service request scheduling algorithm based on dynamic reuse, according to current system load and divisible character of cloud service requests, the virtual re- sources can be rent and reused on demand to achieve optimal scheduling of dynamic requests in reasona- ble time. The rental cost of the overall infrastructure for increasing cloud service providers' profits can be minimized when meeting service level agreement constraints. Simulation indicates that our proposed algo- rithm shows better performance compared with other revenue - aware algorithms in terms of resource utili- zation and operation profit.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2013年第1期86-90,共5页 Journal of Beijing University of Posts and Telecommunications
基金 教育部博士点基金项目(20110005130001) 国家自然科学基金项目(61272521) 新世纪优秀人才支持计划项目(NECT-100263)
关键词 云服务 服务等级协议 成本感知 虚拟机 遗传算法 cloud service service level agreement cost-aware virtual machine generic algorithm
  • 相关文献

参考文献4

  • 1Lee Y C, Wang Chen, Zomaya A Y, et al. Profit-driven scheduling for cloud services with data access awareness [J]. J Parallel Distrib Comput, 2012,72(4): 591-602.
  • 2Chen Junliang, Wang Chen, Zhou Bingbing, et al. Tradeoffs between profit and customer satisfaction for service provisioning in the cloud [ C 1//HPDC 2011. San Jose: ACM, 2011: 229-238.
  • 3Popovici F I, Wilkes J. Profitable services in an uncer- tain world [ C ]//SC 2005. Washington: ACM, 2005 : 36.
  • 4J Berlifiska, M Drozdowski. Scheduling divisible Map Reduce computations [ J ]. J Parallel Distrib Comput, 2011, 71(3) : 450-459.

同被引文献16

  • 1Arora V,Tyagi S S. Performance evaluation of load balancing policiesacross virtual machines in a data center [ C ] //Proc of InternationalConference on Optimization, Reliabilty, and Infonnation Technology.[S. I. ] :IEEE Press,2014:384-387.
  • 2Goyal A. A study of load balancing in cloud computing using soft com-puting techniques[J]. International Journal of Computer Applica-tions ,2014,92 (9) :33-39.
  • 3Zhang Tao. Design and application of continuing education networktraining platform based on cloud computing[ C ] //Proc of InternationalConference on Cybernetics and Informatics. New York: Springer,2014:1203-1210.
  • 4Luo Jianying,Rao Lei,Liu Xue. Temporal load balancing with servicedelay guarantees for data center energy cost optimization [ J ]. IEEETrans on Parallel and Distributed Systems,2014,25(3) :775-784.
  • 5Ramezani F,Lu J,Hussain F K. Task-based system load balancing incloud computing using particle swarm optimization [ J ]. InternationalJournal of Parallel Programming,2014,42(5) :739-754.
  • 6Venkata K P. Honey bee behavior inspired load balancing of tasks incloud computing environments [ J]. Applied Soft Computing,2013 ,13(5) :2292-2303.
  • 7Dash M,Mahapatra A,Chakraborty N R. Cost effective selection of da-ta center in cloud environment [ J ]. International Journal on Ad-vanced Computer Theory and Engineering,2013,2(1) :1-5.
  • 8Samal P, Mishra P. Analysis of variants in round robin algorithms forload balancing in cloud computing [ J ]. International Journal ofComputer Science and Information Technologies, 2013,4(3):416-419.
  • 9Deng Wei,Liu Fangming, Jin Hai,et al. Harnessing renewable energyin cloud datacenters: opportunities and challenges [ J ]. IEEE Net-work,2014,28(l) :48-55.
  • 10Gulati A, Chopra R K. Dynamic round robin for load balancing in acloud computing [J]. International Journal of Computer Scienceand Mobile Computing,2013,2(6) :274-278.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部