摘要
热工过程具有非常复杂的动态特性以及强耦合、大延迟和不确定等特征。控制过程需要较为精确的模型,但是常规的建模往往并不能满足要求,因此提出一种改进型的TS模糊神经网络建模方法。首先基于一种覆盖聚类算法对离线数据进行分类,初步得到模糊神经网络的前件和后件参数,再利用卡尔曼滤波算法调整后件参数和动态梯度算法调整隶属函数的宽度和中心,最后把得到的前件参数和后件参数进入在线网络,若进入网络的实时数据不属于所有的类,则应增加聚类中心和规则。
Considering the complex dynamic behaviors,nonlinearities,strong coupling and time-varying characteristics of modern thermal process,the traditional modeling method does not satisfy the demand of accuracy.Based on the fuzzy theory and neural network,a new method is provided.In this paper,firstly,the offline data is sorted by cover cluster in the model identification method and then cluster centers were used in fuzzy net.Secondly,the Kalman filter is used to identify the consequent parameters of fuzzy rules.At last,gradient algorithm is used to adjust antecedent parameters.Finally,two simulation examples of thermal process are given to prove the validity of the network.
出处
《工业控制计算机》
2013年第3期25-26,28,共3页
Industrial Control Computer
基金
国家863高技术基金(2006AA05A114-2)
关键词
TS模糊神经网络
覆盖聚类
热工过程
模型辨识
TS fuzzy neural network,cover cluster,thermal process,model identification