摘要
In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. The problem is formulated using first order shear deformation theory. The spatial descretization of the linear differential equations is carried out using fast converging finite double Chebyshev series. The effect of panel thickness, curvature, boundary conditions, lamination scheme as well as material property on the static response of panel has been investigated in detail.
In the present work, analytical solutions for laminated composite doubly curved panels on rectangular plan form undergoing small deformations and subjected to uniformly distributed transverse load have been obtained. The problem is formulated using first order shear deformation theory. The spatial descretization of the linear differential equations is carried out using fast converging finite double Chebyshev series. The effect of panel thickness, curvature, boundary conditions, lamination scheme as well as material property on the static response of panel has been investigated in detail.