期刊文献+

Von Neumann algebras generated by multiplication operators on the weighted Bergman space:A function-theory view into operator theory 被引量:1

Von Neumann algebras generated by multiplication operators on the weighted Bergman space:A function-theory view into operator theory
原文传递
导出
摘要 Recently,a class of Type Ⅱ factors has been constructed,arising from holomorphic coverings of bounded planar domains.Those operators in Type Ⅱ factors act on the Bergman space.In this paper,we develop new techniques to generalize those results to the case of the weighted Bergman spaces.In addition,a class of group-like von Neumann algebras are constructed,which are shown to be-isomorphic to the group von Neumann algebras. Recently, a class of TypeⅡfactors has been constructed, arising from holomorphic coverings of bounded planar domains. Those operators in Type Ⅱ factors act on the Bergman space. In this paper, we develop new techniques to generalize those results to the case of the weighted Bergman spaces. In addition, a class of group-like von Neumann algebras are constructed, which are shown to be *-isomorphic to the group von Neumann algebras.
作者 HUANG HanSong
出处 《Science China Mathematics》 SCIE 2013年第4期811-822,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.11001078) Shanghai Municipal Education Commission and Shanghai Education Development Foundation (GrantNo. 11CG30)
关键词 weighted Bergman space holomorphic covering map the fundamental group yon Neumann algebra Type factor 加权Bergman空间 诺伊曼代数 函数理论 算子理论 运算符 视图 乘法 平面区域
  • 相关文献

参考文献31

  • 1Conway J. A Course in Operator Theory. In: Graduate Studies in Mathematics 21. Providence, RI: Amer Math Soc, 2000.
  • 2Cowen C. The commutant of an analytic Toeplitz operator. Trans Amer Math Soc, 1978, 239:1-31.
  • 3Cowen C. An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators. J Funct Anal, 1980, 36:169-184.
  • 4Cowen C. The commutant of an analytic Toeplitz operator, II. Indiana J Math, 1980, 29:1-12.
  • 5Douglas R, Putinar M, Wang K. Reducing subspaces for analytic multipliers of the Bergman space. J Funct Anal, 2012, doi:/10.1016/j.j fa.2012.06.008.
  • 6Duren P, Schuster A. Bergman Spaces. In: Mathematics Surveys and Monographs 100. Providence, RI: Amer Math Soc, 2004.
  • 7Douglas R, Sun S, Zheng D. Multiplication operators on the Bergman space via analytic continuation. Adv Math, 2011, 226:541-583.
  • 8Goodman F M, de la Harpe P, Jones V F R. Coxeter Graphs and Towers of Algebras. New York: Springer-Verlag, 1999.
  • 9Greenberg M, Harper J. Algebraic Topology: A First Course. In: Mathematics Lecture Note Series 58. Reading, Mass: Benjamin/Cummings Publ Co Inc, 1981.
  • 10Griffiths H. The fundamental group of a surface, and a theorem of Schreier. Acta Math, 1963, 110:1-17.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部