期刊文献+

大规模社会网络敏感链接推理方法

Inferring Sensitive Link in Large-Scale Social Networks
下载PDF
导出
摘要 社会网络中许多应用需要对敏感链接关系进行匿名保护,然而攻击者利用基于推理的攻击可以披露个体之间的链接隐私关系。当前许多基于网络结构的推理攻击方法尽管能够找出链接关系,但由于没有考虑节点之间的相似度量特征而导致推理效率较低,并且也不适用于推理大规模网络节点的链接关系。提出了一种大规模社会网络中基于节点相似度量特征的敏感链接推理框架。该框架包括基于图聚类的特征矩阵划分,针对每个类进行奇异值分解,进而计算出各节点对之间的相似度量值,再以相似度量值为贝叶斯推理条件来计算节点对之间链接存在性的后验概率。实验结果表明,所提出的敏感链接推理方法有较高的推理准确性,增强了推理效果,尤其是在大规模社会网络中,优势更加明显。 Many applications of social networks require link anonymity due to the sensitive nature of relationship, while link inference used by attackers in social networks could lead to link disclosure. To disclose the sensitive link relationship between nodes, attackers always depend on graph structure features to carry out their attacking objectives. The previous work only focuses on single structure feature as the background knowledge as well as overlooks the structural proximity of nodes, which will result in inferior inference. Therefore, this paper proposes an efficient inference framework based on node proximity in large-scale social networks. This framework includes matrix decomposition based on graph-clustering, computing proximity of nodes by singular value decomposition for every cluster. The paper also proposes an efficient algorithm, called Linkln, which uses node proximity as the inferring condition of Bayes' theorem to boost the posterior probability of links. Experimental results show that the framework outperforms the single methods, and is efficient and scalable in boosting the accuracy of link inference.
出处 《计算机科学与探索》 CSCD 2013年第4期304-314,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.60833005 91024032 61070055 国家科技重大专项"核高基"项目No.2010ZX01042-002-003 中国人民大学科学研究基金No.10XNI018~~
关键词 社会网络 敏感链接 链接披露 相似度量 social network sensitive link link disclosure proximity measure
  • 相关文献

参考文献16

  • 1Zou Lei, Chen Lei, Ozsu M T. K-automorphism: a general framework for privacy preserving network publication[C]// Proceedings of the International Conference on Very Large Data Bases (PVLDB '09), Lyon, France, 2009: 946-957.
  • 2Cheng J, Fu A Wai-Chee, Liu Jia. K-isomorphism: privacy preserving network publication against structural attacks[C]// Proceedings of the 2010 ACM International Conference on Management of Data (SIGMOD '10), Indianapolis, Indiana, USA, 2010. New York, NY, USA: ACM, 2010: 459-470.
  • 3Cormode G, Srivastava D, Bhagat S, et al. Class-based graph anonymization for social network data[C]//Proceedings of the Intemational Conference on Very Large Data Bases (PVLDB '09), Lyon, France, 2009:810-811.
  • 4Zheleva E, Getoor L. Preserving the privacy of sensitive relationships in graph data[C]//LNCS 4980: Proceedings of the Workshop on Privacy, Security, and Trust in KDD (PinKDD '07), San Jose, California, USA, 2007. Berlin,Heidelberg: Springer-Verlag, 2007: 153-171.
  • 5Backstrom L, Dwork C, Kleinberg J. Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography[C]//Proceedings of the 16th International Conference on World Wide Web (WWW '07), Banff, Alberta, Canada, 2007. New York, NY, USA: ACM, 2007: 181-190.
  • 6Lindamood J, Heartherly R. Inferring private information using social network data[C]//Proceedings of the 18th Inter- national Conference on World Wide Web (WWW '09), Madrid, Spain, 2009. New York, NY, USA: ACM, 2009: 1145-1146.
  • 7Liu Kun, Terzi E. Towards identity anonymization on graphs[C]//Proceedings of the 2008 ACM International Conference on Management of Data (SIGMOD '08), Van- couver, BC, Canada, 2008. New York, NY, USA: ACM, 2008: 93-106.
  • 8Zhou Bin, Pei Jian. The k-anonymity and/-diversity aches for privacy preservation in social networks appro- against neighborhood attacks[J]. Knowledge and Information Systems, 2011, 28(1): 47-77.
  • 9Liben-Nowell D, Kleinberg J. The link prediction problem for social networks[C]//Proceedings of the 12th International Conference on Information and Knowledge Management (CIKM '03). New York, NY, USA: ACM, 2003: 556-559.
  • 10Salton G, MeGill M J. Introduction to modem information retrieval[M]. IS.1.]: McGraw Hill, 1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部