期刊文献+

解线性不等式约束凸规划问题的势下降内点算法

Potential Reduction Interior-point Algorithm for Linear Convex Programming Problem with Inequality Constraints
下载PDF
导出
摘要 提出了一种解线性不等式约束凸规划问题的势下降算法,并在一定的假设条件下,证明了该算法的收敛性,最后通过数值实验验证了该算法的有效性. In this paper, a potential reduction interior-point algorithm for the linear convex programming problem with inequality constraints is presented and the convergence of the algorithm is proved under some assumptions. Experiments with real data verify the effectiveness of the algorithm.
出处 《成都大学学报(自然科学版)》 2013年第1期36-38,41,共4页 Journal of Chengdu University(Natural Science Edition)
基金 国家自然科学基金(11201039 61273179)资助项目
关键词 凸规划 不等式约束 势下降内点算法 convex programming inequality constraints potential reduction interior-point algorithm
  • 相关文献

参考文献6

  • 1Karmarkar N. A new polynomial-time algorithm for linear pro- gramming [ C ]//STOC' 84 Proceedings of the Sixteenth annual ACM Symposium on Theory of Computing. New York: ACM Press, 1984:302 - 311.
  • 2Ye Y,Tse E. An extention of Karmarkar's projective algorithm for convex quadratic programming [ J ]. Mathematical Program- ming, 1989,44( 1 - 3) : 157 - 179.
  • 3Monteiro RDC, Adler I. Interior path following primal-dual algo- rithms [ J ]. Mathematical Progranming, 1989, 44 ( 1 - 3) : 27 - 66.
  • 4Goldfarb D, Liu S. AnPrimal interior point algorithm for convex quadratic programming [ J]. Mathematical Programming, 1991,49 (1 - 3) :325 - 340.
  • 5梁昔明.求解凸二次规划问题的势下降内点算法[J].高等学校计算数学学报,2002,24(1):81-86. 被引量:13
  • 6Moteiro RDC. A Globally Convergent Primal-dual Interior Point Algorithm for convex programming [ J ]. Mathematical Program- ming, 1994,64( 1 - 3) : 123 - 147.

二级参考文献12

  • 1[1]Lucia, A. and Xu, J.. Chemical process optimization using Newton-like methods. Computers chem. Engng. , 1990, 14(2):119-138
  • 2[2]Fletcher, R.. Practical methods of optimization. 2nd end.. New York, Wiley Pub. , 1987
  • 3[3]Lucia, A. , Xu, J. and Couto, G. C. D'. . Sparse quadratic programming in chemical process optimization. Ann. Oper. Res. , 1993, 42(1):55-83
  • 4[4]Vasantharajan, S. , Viswanathan, J. and Biegler, L.T.. Reduced successive quadratic programming implementation for large-scale optimization problems with smaller degrees of freedom. Computers chem. Engng. , 1990,14 (8): 907- 915
  • 5[5]Kozlov, M.K. , Tarasov, S.P. and Khachiyan, L.G. , Polynomial solvability of convex quadratic programming. Soviet Mathematics Doklady, 1979,20(8):1108-1111
  • 6[6]Kappor, S. and Vaidya, P.M.. Fast algorithms for convex quadratic programming and multicommodity flows. Proceedings of the 18th Annual ACM Symposium on Theory of Computing, California, May, 1986,147- 159
  • 7[7]Ye, Y. and Tse, E.. A polynomial algorithm for convex programmin. Working Paper, Department of Enginering-Economic Systems, Stanford University, Stanford, CA, 1986
  • 8[8]Monteiro, R. D.C. and Adler, I. , Interior path following primal-dual algorithms. Part I : convex quadratic programming. Math. Programming, 1989,44 (1) : 43- 66
  • 9[9]McCormick, G. P.. Nonlinear programming: theory, algorithms and applications. New York:John Wileg & Sons Inc. , 1983
  • 10[10]Monteiro, R. D. C. . A globally convergent primal-dual interior point algorithm for convex programming. Math. Programming, 1994, 64(1) : 123- 147

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部