期刊文献+

一种基于Kolmogorov-Smirnov检验的缺陷定位方法 被引量:4

Fault Localization Based on Kolmogorov-Smirnov Testing Model
下载PDF
导出
摘要 现有的基于中心极限定理和参数假设检验的方法被认为是一种高效的缺陷定位技术.然而,实验结果表明,在某些实验数据集上,测试用例的总数过小而不宜运用中心极限定理.实验结果同时表明,谓词的实际分布背离了基于参数假设检验的方法所假设的正态分布.基于以上发现,提出了一种基于Kolmogorov-Smirnov检验的缺陷定位方法.在西门子测试集和大型程序上的实验结果表明:该方法在小样本和非正态分布的样本集上具有较好的适用性.若谓词在某个测试用例执行时未被执行,已有的方法将该执行中此谓词的评估偏差值设为0.5.在西门子程序集上调查了该设置的有效性,实验结果表明:对于基于Kolmogorov-Smirnov检验的缺陷定位方法,该设置可以提高缺陷定位的效率. Software debugging is time-consuming and is often a bottleneck in the software development process. Techniques that can reduce the time required to locate faults can have a significant impact on the cost and quality of software development and maintenance. Among these techniques, the methods based on predicate evaluations have been shown to be promising for fault localization. Many existing statistical fault localization techniques based on predicate compare feature spectra of successful and failed runs. Some of these approaches test the similarity of the feature spectra through parametric hypothesis testing models based on the central limit theorem. However, our finding shows thai precondition for the central limit theorem and assumption on feature spectra forming normal distributions are not well-supported by empirical data. This paper proposes a non-parametric approach, the Kolmogorov-Smirnov test, to measure the similarity of the feature spectra of successful and failed runs. We also compare our approach with SOBER (a method based on the parametric hypothesis testing model). The empirical results on the Siemens suite and large programs show thai our approach can outperform SOBER, especially on small samples and non-normal distributions. If predicate is never evaluated in a run, SOBER sets its evaluation bias to 0.5. In this paper, we also investigate the effectiveness of this setting for fault localization. The empirical results on the Siemen, suite show that for the method based on Kolmogorov-Smirnov test, the performance with the setting of 0.5 is better than that without the setting for fault localization.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第4期686-699,共14页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61003016)
关键词 软件测试 缺陷定位 Kolmogorov—Smirnov检验 程序谓词 评估偏差 software debugging fault localization Kolmogorov-Smirnov test program predicate evaluation bias
  • 相关文献

参考文献25

  • 1Ernst M D, Cockrell J, Griswold W G, et al. Dynamically discovering likely program invariants to support program evolution [J]. IEEE Trans on Software Engineering, 2001, 27(2) : 99-123.
  • 2Hangal S, Lam M S. Tracking down software bugs using automatic anomaly detection [C] //Proc of the 24th Int Conf on Software Engineering. New York: ACM, 2002:291-301.
  • 3Wong W E, Qi Y, Zhao L, et al. Effective fault localization using code coverage [C] //Proc of the 31st Annual Int Computer Software and Application Conf. Los Alamitos, CA: IEEE Computer Society, 2007:449-456.
  • 4Li W, Harrold M J, GOrg C. Detecting user-visible failures in AJAX Web applications by analyzing users' interaction behaviors [C] //Proc of the 25th IEEE/ACM Int Conf on Automated Software Engineering. New York: ACM, 2010: 55-158.
  • 5Park S, Vudue R W, Harrold M J. Falcon: Fault localization in concurrent programs [C] //Proc of the 32nd ACM/IEEE Int Conf on Software Engineering. New York: ACM, 2010: 245-254.
  • 6Kim M, Sinha S, G6rg C, et al. Automated bug neighborhood analysis for identifying incomplete bug fixes [C] //Proc of the 3rd Int Conf on Software Testing. Los Alamitos, CA: IEEE Computer Society, 2010:383-392.
  • 7Santeliees R A, Harrold M J, Orso A. Precisely detecting runtime change interactions for evolving software f-C] //Proc of the 3rd Int Conf on Software Testing. Los Alamitos, CA: IEEE Computer Society, 2010:429-438.
  • 8Liu C, Han J. Failure proximity: A fault localization-based approach [C] //Proe of the 14th ACM SIGSOFT Int Syrup on Foundations of Software Engineering. New York: ACM, 2006:46-56.
  • 9Liu C, Fei L, Yan X, et al. Statistical debugging: A hypothesis testing-based approach [J]. IEEE Trans on Software Engineering, 2006, 32(10): 831-848.
  • 10Liblit B, Aiken A, Zheng A X, et al. Bug isolation via remote program sampling [C]//Proc of the 2003 ACM SIGPLAN Conf on Programming Language Design and Implementation. New York: ACM, 2003, 141-154.

同被引文献138

  • 1冉承新,凌云翔.AHP-Fuzzy在仿真系统可信度综合评价中的应用[J].计算机仿真,2005,22(8):59-61. 被引量:16
  • 2徐宝文,聂长海,史亮,陈火旺.一种基于组合测试的软件故障调试方法[J].计算机学报,2006,29(1):132-138. 被引量:38
  • 3李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 4Li Y, Li J. Segmentation of SAR intensity imagery with a voronoi tessellation, bayesian inference, and reversible jump MCMC al- gorithm [ J ]. IEEE Transactions on C, eoseienee and Remote Sensing, 2010, 48(4) : 1872-1881.
  • 5Kato Z. Sementation of color images via reversible jump MCMC sampling [ J ]. Journal Image and Vision Computing, 2006, 26(3) : 361-371.
  • 6Corder G W, Foreman D L. Nonparametric Statistics for Non- Statisticians: A Step-by-Step Approach [ M ]. Hoboken: John Wiley & Sons, 2009 : 26-28.
  • 7Geman D, Geman S, Graffigne C. Boundary detection by con- strained optimization [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7) : 609-628.
  • 8Lucarini V. Symmetry-break in voronoi tessellations [ J ]. Sym- metry, 2009, 1(1): 21-54.
  • 9Zhao Q H, Li Y, Liu Z G. SAR image segmentation using voronoi tessellation and bayesian inference applied to dark dpot feature extraction [J]. Sensors, 2013, 13(11) : 14484-14499.
  • 10Metropolis N, Rosenbluth A W, Rosenbluth M N. Equations of state calculations by fast computing machines [ J ]. Journal of Chemical Physics, 1953, 21(6) : 1087-1092.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部