期刊文献+

一种利用人脸对称性的光照归一化方法 被引量:6

A Lighting Normalization Approach Exploiting Face Symmetry
下载PDF
导出
摘要 光照归一化在光照鲁棒的人脸识别中被广泛使用.许多现有光照归一化方法将人脸图像视为自然图像,而忽略了人脸这一类特定物体的先验属性,因此很难从一幅具有侧光的人脸图像中恢复阴影区域中的人脸信息.提出了利用人脸对称性先验的光照归一化方法,在能量最小化框架下,对人脸图像的阴影区域进行光照归一化时参考其对称非阴影区域中的人脸结构信息,同时提出了无阴影信度图将二元最优化问题简化为一元最优化问题,以降低光照归一化方法的计算代价.在合成阴影和真实阴影人脸图像上的实验表明,利用人脸对称性的光照归一化方法能有效恢复图像阴影区域中的人脸特征,并对人脸误配准和非对称几何归一化具有一定的鲁棒性. Lighting normalization is a kind of widely used approach for achieving illumination invariant face recognition. Lighting normalization approaches try to regularize various lighting conditions in different face images into ideal illumination before face recognition. However, many existing methods perform lighting normalization by treating face images as natural images, and neglect the particular properties of faces, e.g. face symmetry. As a result, for the face images with side lighting, many existing methods cannot recover the facial features in shadow regions. To resolve this problem, in this paper, a novel lighting normalization approach exploiting face symmetry priori is proposed for illumination invariant face recognition. In the proposed approach, lighting normalization for a shadow region is performed by referring to the face structure information of a symmetric non-shadow region. The symmetry priori of face structure is modeled via an energy minimization framework. In addition, a shadow-free reliability map is further proposed to simplify the original bivariate optimization problem into a univariate one in order to reduce the computation cost. Experiments on face images with synthetic and real shadows show that the proposed lighting normalization approach is effective in recovering facial features in shadow regions of a face, and also robust to face misalignment and asymmetric face geometric normalization.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第4期767-775,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61025010 61173065 U0835005)
关键词 光照归一化 人脸对称性 能量最小化 光照鲁棒 人脸识别 lighting normalization face symmetry energy minimization illumination invariant facerecognition
  • 相关文献

参考文献19

  • 1Adini Y, Moses Y, Ullman S. Face recognition: The problem of compensating for changes in illumination direction [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 721-732.
  • 2Gonzalez G Z, Woods R E. Digital Image Processing [M]. Englewood Cliffs, NJ: Prentice Hall, 1992:91-94.
  • 3Shan Shiguang, Gao Wen, Cao Bo, et al. Illumination normalization for robust face recognition against varying lighting conditions [C] //Proc of the 9th ICCV Workshop on Analysis and Modeling of Faces and Gestures. Piscataway, NJ: IEEE, 2003:157-164.
  • 4Basri R, Jacobs D W. Lambertian reflectance and linear subspaces [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(2): 218-233.
  • 5Ramamoorthi R, Hanrahan P. On the relationship between radiance and irradiance: Determining the illumination from images of a convex Lambertian object [J]. Journal of the Optical Society of America, 2001, 18(10) : 2448-2459.
  • 6Wang Haitao, Li Ziqing, Wang Yangsheng. Face recognition under varying lighting conditions using self quotient image [C] //Proc of the 6th IEEE Int Conf on Automatic Face and Gesture Recognition. Piscataway, NJ: IEEE, 2004:819-824.
  • 7Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround Retinex [j]. IEEE Trans on Image Processing, 1997, 6(3): 451-462.
  • 8Chen Weilong, Er M J, Wu Shiqian. Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain [J]. IEEE Trans on Systems, Man and Cybernetics: Part B, 2006, 36(2): 458-466.
  • 9Du S, Ward R. Wavelet-based illumination normalization for face recognition [C] //Proc the 12th IEEE Int Conf on Image Processing. Piscataway, NJ: IEEE, 2005: 954-957.
  • 10Han Hu, Shan Shiguang, Chen Xilin, et al. Illumination transfer using homomorphic wavelet filtering and its application to light-insensitive face recognition [C] //Proc of the 8th IEEE Int Conf Automatic Face and Gesture Recognition. Piscataway, NJ: IEEE, 2008:1-5.

同被引文献83

  • 1Shouder Wei,Lai Shanghong.Robust face recognition under lighting variations,Proceedings of the 17th International Conference on Pattern Recognition,2004:354-357.
  • 2Pablo H,Kumar B V K V,Sawides M.Palm print classification using multiple advanced correlation filters and palm-specific segmentation,IEEE Transactions on Information Forensics and Security,2007; 2(3):612-622.
  • 3Heo J,Sawides M,Abiantun R,et al.Face recognition with kernel correlation filters on a large scale database,Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing,2006:181-184.
  • 4Pradipta K.Banerjee,Asit K.Datta,Generalized regression neural network trained preprocessing of frequency domain correlation filter for improved face recognition and its optical implementation,Optics & Laser Technology,2013 ; 45 (2):217-227.
  • 5Ng C K,Sawides M,Khosla P K.Real time face verification on a cell phone using advanced correlation filtters.Proceedings of IEEEWorkshop on Automatic Identification Advanced Technologies,2005:57-62.
  • 6Kumar B V,Mahalanobis A,Juday R.Correlation pattern recognition,New York:Cambridge University Press,2005.
  • 7Yang J,Zhang D,Frangi A F,et al.Two-dimensional PCA:anew approach to appearance-based face representation and recognition,IEEE Transaction on Pattern Analysis and Machine Intelligence,2004; 26 (1):131-137.
  • 8胡峰松.单样本下可变姿态与光照人脸识别研究.长沙:湖南大学,2010.
  • 9Kumar B V K V.Minimum variance synthetic discriminant functions.Optical Society of America,1986;3(10):1579-1584.
  • 10Mahalanobis A,Kumar B V,Song S,et al.Unconstrained correlation filters,Optical Society of America,1994; 33 (17):3751-3759.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部