期刊文献+

图像多尺度边缘检测及图像多尺度分割研究 被引量:4

Multi-scale Edge Detection and Multi-scale Segmentation of Imagery
下载PDF
导出
摘要 提出了一种改变Canny阈值的图像多尺度边缘检测方法,该方法有效保持了边缘位置精度,不同尺度下的边缘之间不存在位移;利用多尺度边缘特征与多尺度光谱特征,实现了融合两种特征的图像多尺度分割,能够有效降低过分割和欠分割现象,使得分割结果更忠实于原地物。 The scale is a basic issue of geography field.Many algorithms of multi-scale image segmentation,based on spectral features are put forward,but the multi-scale image segmentation,fusing multi-scale edge features and multi-scale spectral features are rarely researched.This paper presents a method to extract multi-scale edges with changing the Canny thresholds,which is effective to preserve the accuracy of edge location,and the edges between different scales don′t shifted.This multi-scale edge features and multi-scale spectral features are integrated to finish the multi-scale image segmentation.The results show that our methods can effectively reduce over-segmentation and under-segmentation,and the segmentation results are more faithful to the original objects.
出处 《地理与地理信息科学》 CSCD 北大核心 2013年第2期45-48,F0003,共5页 Geography and Geo-Information Science
基金 国家自然科学基金项目(41071274、61132006)
关键词 边缘特征 光谱特征 多尺度特征 图像分割 edge feature spectrum feature multi-scale feature image segmentation
  • 相关文献

参考文献20

  • 1HAY G J, CASTILLA G. Object-bas image analysis: strengths, weakness,opportunities and threats (SWOT)[A]. 1st Interna- tional Conference on Object-Based Image Analysis[C]. 2006.
  • 2MUNOZ X, FREIXENET J,CUFI X, et al. Strategies for image segmentation combining region and boundary information[J]. Pattern Recognition I.etters, 2003,24 ( 1 - 3) : 375- 392.
  • 3TABB M, AHUJA N. Multiscale image segmentation by integrated edge and region detection[J]. IEEE Transactions on Im- age Processing, 1997,6 (5) : 642- 655.
  • 4TANG H,WU E X,MA Q Y,et al. MRI brain image segmenta- tion by multi-resolution edge detection and region selection[J]. Computerized Medical Imaging and Graphics, 2000 24 (6) : 349 -357.
  • 5LIN Y, TIAN J, HE H G. Image segmentation via fuzzy object extraction and edge detection and its medical application[J]. X- Ray Science and Technology, 2002,10 (1-2) : 95- 106.
  • 6谭玉敏,槐建柱,唐中实.一种边界引导的多尺度高分辨率遥感图像分割方法[J].红外与毫米波学报,2010,29(4):312-315. 被引量:19
  • 7eCognition Developer. eC.ognition User Guide[ EB/OL]. http: / / www. eeognitiom eom/products/tria|-software. 2012-08- 31.
  • 8WANG Y Z, YANG J, PENG N S. Unsupervised color-texture segmentation based on soft criterion with adaptive mean-shift clustering[J]. Pattern Recognition Letters, 2006,27 ( 5 ) : 386 - 392.
  • 9SHI J B, MALIK J. Normalized cuts and image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2000,22 (8) : 888 - 905.
  • 10HAY G J ,BLASCHKE T, MARCEAU D J, et al. A compari- son of three image-object methods for the multiseale analysis of landscape structure[J]. ISPRS Journal of Photograrnmetry Remote Sensing, 2003,57 (5-6) : 327- 345.

二级参考文献20

  • 1肖鹏峰,冯学智,赵书河,佘江峰.基于相位一致的高分辨率遥感图像分割方法[J].测绘学报,2007,36(2):146-151. 被引量:55
  • 2Wuest B,Zhang Y.Region based segmentation of QuickBird multispectral imagery through band ratios and fuzzy comparison[J].ISPRS Journal of Photogrammetry and Remote Sensing.2009,(64):55-64.
  • 3陈忠.高分辨率遥感图像分类技术研究,2006.
  • 4Mealy B J.Fast region merge processing for watershed transforms[R].UCSC-CRL-02-39.2002.12.
  • 5Haris K,Efstratiadis S N,Katsaggelos A K.Hybrid image segmentation using watersheds and fast region merging[J].IEEE Transactions on Image Processing,1998,7(12):1684-1699.
  • 6Robinson D J,Redding N J,Crisp D J.Implementation of a fast algorithm for segmenting SAR imagery[R].2002.1.www.dsto.defence.gov.au/corportate/reports/DSTO_TR_1242.pdf.
  • 7ENVI feature extraction module user's guide[M].Feature Extraction Module Version 4.6 December,2008 Edition.
  • 8Mueller M,Segl K,Kaufmann H.Edge-and region-based segmentation technique for the extraction of large,man-made objects in high-resolution satellite imagery[J].Pattern Recognition,2004,37(8):1619-1628.
  • 9Zhou Y,Starkey J,Mansinha L.Segmentation of petrographic images by integrating edge detection and region growing[J].Computers & Geosciences,2004,30(8):817-831.
  • 10Felzenszwalb P F,Huttenlocher D P.Efficient graph-based image segmentation[J].International Journal of Computer Vision,2004,59(2):167-181.

共引文献255

同被引文献45

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部