期刊文献+

基于LTP子模式的人脸识别研究 被引量:2

Face Recognition Based on Local Ternary Pattern Sub-pattern
下载PDF
导出
摘要 针对局部三元模式提取到的人脸特征通常具有较高的维数,导致特征的紧致度不高,提出一种新的局部人脸特征提取方法——LTP子模式,并结合线性鉴别分析获得最佳的人脸局部纹理紧致特征的分类投影轴。本文在ORL和AR两个标准人脸库上测试,LTP-SP提取到的人脸特征维数不到原LTP特征的30%,但是识别性能却优于原始算法,因此算法具有较好的应用前景。 Face recognition algorithms based on Local Ternary Pattern(LTP) have the problem that the face features extracted by LTP are high-dimensionality.The LTP features are always low compacted.Aiming to resolve this problem,in this paper,we propose a new local feature extraction method called Local Ternary Pattern Subpattern(LTP-SP) approach.Analysis is employed to reduce the feature vector dimensionality,and the optimal classification projection axes of face local texture features is obtained using Linear Discriminant Analysis.Testing on ORL and AR face database,the experimental results show that the dimensionality of the proposed LTP-SP feature is only about 30% of the original LTP feature,but the recognition of the LTP-SP method is superior to the LTP method.So the proposed method has good application prospects.
作者 霍天霖 王莹
出处 《吉林工程技术师范学院学报》 2012年第5期77-80,共4页 Journal of Jilin Engineering Normal University
关键词 人脸识别 局部三元模式 局部特征 维数约减 face recognition local ternary pattern local features dimensionality reduction
  • 相关文献

参考文献8

  • 1Timo A,Abdenour H,Matti P. Face recognition with localbinary patterns[ C] . Prague: Springer-Verlag,2004.
  • 2Timo A, Abdenour Hadid, Matti Pietik.ainen. Face descrip-tion with local binary patterns: application to face recognition[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2006,28( 12).
  • 3XiaoyangTan, Bill Triggs. Enhanced Local Texture FeatureSets for Face Recognition under Difficult Lighting Conditions[J]. IEEE Transactions on Image Processing, 2010,19(6).
  • 4罗佳,石跃祥,段德友.基于SIFT特征的人脸识别方法[J].计算机工程,2010,36(13):173-174. 被引量:14
  • 5Belhumeur PN, Hespanha J, Kriegman DJ. Eigenfaces vs.Fisherfaces : Recognition Using Class Specific Linear Projec-tion [J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 1997,19(7).
  • 6Yixiong Liang, Chengrong Li, Weiguo Gong,et al. Uncorre-lated linear discriminant analysis based on weighted pairwiseFisher criterion[ J]. Pattern Recognition,2007, (40).
  • 7杨清山,郭成安,金明录.基于Gabor多通道加权优化与稀疏表征的人脸识别方法[J].电子与信息学报,2011,33(7):1618-1624. 被引量:18
  • 8Ojala T,Pietikainen M, Maenpaa M. Multiresolution gray-scale and rotation invariant texture classification width localbinary patterns [ J], IEEE Transactions on Pattern Analysisand Machine Intelligence, 2002,24(7).

二级参考文献19

  • 1Lowe D.Distinct Image Features from Scale-invariant Key Points[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 2Martinez A M,Benavente R.The AR Face Database[EB/OL].(1998-06-21).http://cobweb.ecn.purdue.edu/-aleix/aleix_face_DB.html.
  • 3Tan Xiaoyan,Chen Songcan,Zhou Zhihua,et al.Face Recognition from a Single Image Per Person:A Survey[J].Pattern Recognition,2006,39(9):1725-1745.
  • 4Martinez A M.Recognizing Imprecisely Localized,Partially Occluded,and Expression Variant Faces from a Single Sample Per Class[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2002,25(6):748-763.
  • 5Tan Xiaoyan,Chen Songcan,Zhou Zhihua,et al.Recognizing Partially Occluded Expression Variant Faces from Single Training Image Per Person with SOM and Soft KNN Ensemble[J].IEEE Trans.on Neural Networks,2005,16(4):875-886.
  • 6Yang Jian,Zhang D,Frangi A F,et al.Two-dimensional PCA:A New Approach to Appearance Based Face Representation and Recognition[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
  • 7Wright J, Yang A, and Ganesh A, et al.. Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 8Su Y, Shan S G, and Chen X L, et al.. Hierarchical ensemble of global and local classifiers for face recognition[J]. IEEE Transactions on Image Processing, 2009, 18(8): 1885-1896.
  • 9Shen L L and Bai L. A review on Gabor wavelets for face recognition [J]. Pattern Analysis and Application, 2006, 9(2): 273-292.
  • 10Amin M A and Yan H. An empirical study on the characteristics of Gabor representations for face recognition [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(3): 401-431.

共引文献30

同被引文献28

  • 1LU Guifu,ZOU Jian,WANG Yong.Incremental complete LDA for face recognition[J].Pattern Recognition,2012,45(7):2510-2512.
  • 2Ahonen T Hadid A,Pietikainen M.Face description with local binary patterns:Application to face recognition[J].IEEE Trans of Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041.
  • 3Guo Zhenhua,Zhang Lei,David Zhang,et al.Rotation invariant texture classification using adaptive LBP with directional statistical features[C]//17th IEEE International Conference on Image Processing,2010:285-288.
  • 4Guo Zhenhua,Zhang Lei,David Zhang.A completed modeling of local binary pattern operator for texture classification[J].IEEE Trans on Image Processing,2010,19(6):1657-1663.
  • 5Jabid T,Kabir M H,Chae O S.Local directional pattern(LDP)for Face Recognition[C]//IEEE International Conference on Consumer Electronics,2010.
  • 6Xie SF,Shan SG.Fusing local patterns of Gabor magnitude and phase for face recognition[J].IEEE Trans Image Processing,2010,19(5):1349-1361.
  • 7Wright J,A Y Yang,Gansed A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
  • 8Tan Xiaoyang,Triggs B.Enhanced local texture feature sets for face recognition under difficult lighting conditions[J].IEEE Trans on Image Processing,2010,19(6):1635-1650.
  • 9Zhang W C,Shan S G,Gao W,et al. Local Gabor Binary Pattern His- togran Sequence(LGBPHS) :A Novel Non -statistical Model for Face Representation and Recognition[ C~//Proc of the 8th Eurropean Con- ference on Computer Vision. Prague, Gzech Republic, 2004:469 -481.
  • 10Jabid T,Kabir M H,Chae O. Local directional patern(LDP) -a robust image descriptor for Obeject Recognition [ C ]//Proc of 7th IEEE Inter- national Conference on Advanced Video and Signal Based Surveil- lance ,2010:482 -487.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部