期刊文献+

超二次吊桥耦合系统无穷多解的存在性

The Existence of Infinitely Many Solutions for Superquadratic Suspension Bridge System
下载PDF
导出
摘要 吊桥耦合系统是一类比较重要的微分方程模型.利用临界点理论研究超二次吊桥耦合系统无穷多解的存在性.在不需假设Ambrosetti-Rabinowitz超二次条件的情形下,得到了吊桥耦合系统无穷多解存在的充分条件. Suspension bridge system is an important model of differential equation. In this paper, we investigate the existence of infinite solutions for suspension bridge system by critical point theory. Under no Ambrosetti - Rabinowitz superquadratic condition,some sufficient conditions for the existence of infinitely many solutions are obtained.
作者 张申贵
出处 《宁夏师范学院学报》 2012年第6期1-6,20,共7页 Journal of Ningxia Normal University
基金 国家自然科学基金项目(31260098) 西北民族大学中青年科研项目(12XB38)
关键词 吊桥耦合系统 无穷多解 临界点 Suspension bridge system Infinitely many solutions Critical point theory
  • 相关文献

参考文献11

  • 1Lazer A C, McKenna P J. Large - amplitude periodic oscillations in suspension bridges:some new connections with Nonlinear analysis[ J ]. SIAM Rev. 1990,133 ( 22 ) : 537-578.
  • 2Ahmed N U, Harbi H. Mathematical analysis of dynam- ic models of suspension bridges [ J ]. SIAM J. Appl. Math. , 1998,58 ( 13 ) : 853- 874.
  • 3An Yukun. Nonlinear perturbations of a coupled system of steady state suspension bridge equations [ J ]. Nonlin- ear Analysis, 2002, 51 ( 11 ) : 1285-1292.
  • 4An Yukun, Fan Xianling. On the coupled system of sec- ond and fourth order elliptic equations [ J ]. Appl. Math.Comput. , 2003,140(2) :341-35i.
  • 5An Yukun. Mountain pass solutions for the coupled sys- tems of second and fourth order elliptic equations [ J ]. Nonlinear Analysis, 2005,63 (9) : 1034-1041.
  • 6Lazer A C, Mckenna P J. On travelling waves in a sus- pension bridge model as the wave speed goes to zero [ J ]. Nonlinear Analysis ,2011,74 (2) : 3998-4001.
  • 7Ji Lei, Tang Chunlei. Existence of solutions for the cou- pled systems of second and fourth order ellipticequations [ J ]. Differential Equations and Applications, 2011,121 (12) :267-277.
  • 8Willem M. Minimax Theorems [ M ]. Boston : Birkhaus- er, 1996.
  • 9Qian Aixia, Li Chong. Infinitely many solutions for a Robin boundary value problem [ J ]. International Journal of Differential Equations, 2010,125 ( 9 ) : 1-9.
  • 10钱爱侠.一类Robin边值问题的解的存在性[J].数学学报(中文版),2010,53(6):1081-1086. 被引量:5

二级参考文献17

  • 1Shi S. J., Li S. J., Existence of solutions for a class of semilinear equations with the Robin boundary value condition, Nonl. Anal., 2009, 71: 3292-3298.
  • 2Schechter M., A variation of the mountain pass lemma and applications, J. London Math. Soc., 1991, 44: 491-502.
  • 3Mao A. M., Zhang Z. T., Sign-changing and multiple sulutions of Kirchhoff type problems without the P. S. condition, Nonl. Anal., 2009, 70: 1275-1287.
  • 4Wang X. J., Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Dill. Equa., 1991, 93: 283-310.
  • 5Ye Q. X., Li Z. Y., Reaction and Diffusion Equantions, Beijing: Kexue Publishing Company, 1994.
  • 6Evance L. C., Partial Differential Equations, Graduate Studies in Mathematics, Vol 19, Amer. Mathe. Soc. Providence, RI, 1998.
  • 7Ji D. H., Tian Y., Ge W. C., The Existence of Positive Solution of Multi-Point Boundary Value Problem with a p-Laplace Operator, Acta Mathematica Sinica, Chinese Series, 2009, 52(1): 3-10.
  • 8Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, J. Funct.Anal.. 1973. 14: 349-381.
  • 9Zou W. M., Variant fountain theorems and their applications, Mannsc. Math.. 2001. 104: 343-358.
  • 10Li G. B., Zhou H. S., Asymptotically linear Dirichlet problem for the p-Laplacian, Nonl. Anal. TMA, 2001,45: 1043-1055.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部