期刊文献+

具时滞带限反馈系统双Hopf分支的存在性分析

The Existence of Double-Hopf Bifurcation in Band-limited Feedback System with Time Delay
下载PDF
导出
摘要 主要研究了具时滞带限反馈系统模型.首先对系统模型做了简单的介绍,从对系统线性化方程的特征方程根的分布分析入手,得出了系统相应的特征方程存在一对纯虚根的条件,然后又讨论了系统双Hopf分支的存在性. A mathematical model of time delay system with band-limited feedback has been studied.Firstly,the model was introduced by analyzing the distribution of the roots of the characteristic equation of the linearized nonlinear equations.The condition that the characteristic equation has a pair of purely imaginary roots was obtained,then the existence of double-Hopf bifurcation is discussed.
作者 杨纪华
出处 《宁夏师范学院学报》 2012年第6期24-28,共5页 Journal of Ningxia Normal University
基金 宁夏师范学院创新团队资助项目(zy201207)
关键词 带限反馈 时滞 双Hopf分支 Band-limited feedback Time delay Double-Hopf bifurcation
  • 相关文献

参考文献10

  • 1Fowler A C. Mathematical Models in the Applied Sci- ences [ M ]. Cambridge: Cambridge University Press, 1997 : 133-146.
  • 2Hale J K, Lunel S M V. Theory of Functional Differetial Equations [ M ]. New York: Springer-Verlag, 1977: 245 -267.
  • 3Just W, Reckwerth D, Reibold E. Influence of Control Loop Latency on Time Delay Feedback Control [ J ].Phys. Rev. E, 1999,59 ( 3 ) :2826-2829.
  • 4Hovel P, Socolar J E S. Stability Domains for Time Delay Feedback with Latency [ J ]. Phys. Rev. E ,2003,68 (3) : 6206-6213.
  • 5Sukow D W, Bleich M E, Gauthier D J. Experimental Observations and Theoretical Analysis [ J ]. Chaos, 1997,7:560-576.
  • 6Takizawa T, Liu Y, Ohtsubo J. Chaos in a Feedback Fabry-perot Interferometer [ J ]. IEEE J. Quantum Elec- tron, 1994,30 (2) : 334-338.
  • 7Dronov V, Hendrey M R, Antonsen T M. Communica- tion with a Chaotic Traveling Wave Tube Microwave Generator[ J]. Chaos ,2004,14:30-37.
  • 8杜毛毛,蒋卫华,徐秀艳.具带限反馈的时滞系统的Hopf分支分析[J].哈尔滨工业大学学报,2008,40(8):1273-1278. 被引量:3
  • 9Illing L, Gauthier D J. Hopf Bifurcations in Time - delay System with Band-limited Feedback [ J ]. Physica D, 2005,210(3) :181-202.
  • 10Yu p. Symbolic Computation of Normal Forms for Reso- nant Double Hopf Bifurcation Using Multiple Time Scales[ J]. Journal of Sound and Vibration,2001,247 (4) :615-632.

二级参考文献5

  • 1ILLING L, GAUTHIER D J. Hopf bifurcations in timelay systems with band-limited feedback[J].Physica D, 2005, 210(3 -4) : 181 -202.
  • 2WEI J J, RUAN S G. Stability and global Hopf bifurcation for neutral differential equations [J]. Acta Mathematics Sinica, 2002, 45( 1 ) : 93 - 104.
  • 3RUAN S G, WEI J J. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays [ J ]. Dynamics of Continuous. Discrete and Impulsive Systems A: Mathematical Analysis, 2003, 10(6): 863-874.
  • 4HASSARD B, KAZARINOFF B N, WAN Y H. Theory and application of Hopf bifurcation [ M ]. Cambridge: Cambridge University Press, 1981.
  • 5WEI J J, JIANG W H. Stability and bifurcation analysis in Van der Pal' s oscillator with delayed feedback [ J ]. Jour nal of Sound and Vibration, 2005, 283(4) : 801 -819.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部