摘要
针对BP神经网络寻优速度慢、实时性差等缺点,提出将小波神经网络应用于短时交通流量预测中.该方法具有良好的局部性特征,弥补了常规神经网络的不足.在非线性逼近中得到了很好的应用.实验结果表明,小波神经网络预测模型的预测精度明显优于BP神经网络,对交通流量预测问题有较高的应用价值.
Based on BP neural network slow optimization speed and poor real-time faults,Presents the application of wavelet neural network in short-time traffic flow forecasting.The method has a good local characteristics,Make up for lack of conventional neural network.In the nonlinear approximation has a very good application.The experimental results show that Wavelet neural network forecast model is better than BP neural network,It has a high application value on the traffic prediction.
出处
《宁夏师范学院学报》
2012年第6期60-62,86,共4页
Journal of Ningxia Normal University
基金
宁夏自然科学基金(NZ12228)
宁夏师范学院重点项目(ZD201311)
宁夏师范学院创新团队资助项目(ZY201212)
宁夏高等学校科学研究项目(NJ201279
NJ201233681)
关键词
小波
神经网络
交通流预测
Wavelet
Neural network
Traffic flow prediction