期刊文献+

基于ARMA的微惯性传感器随机误差建模方法 被引量:8

Stochastic error modeling method for micro inertial sensor based on ARMA
下载PDF
导出
摘要 针对微惯性传感器随机误差建模效果不理想,影响微惯性组合导航系统性能的问题,提出了采用自回归滑动平均(ARMA)对微惯性传感器随机误差进行建模的方法。通过对随机误差模型应用于微惯性器件误差建模的深入分析,将Yule-Walker方程引入线性预测问题中,实现AR功率谱密度的估计,建立了基于随机过程有理功率谱密度的ARMA模型建立方法,并给出了ARMA建模准确性的LDA验证准则。通过微惯性传感器实测数据,对随机误差建模方法进行了有效性验证。该方法为微惯性器件的随机误差建模和分析提供了一种新的途径。 Aiming at problem that the characteristic of the micro inertial integrated navigation system is seriously influenced by effect of stochastic error modeling,a stochastic error modeling method using auto regressive moving average(ARMA) for micro inertial sensor is proposed.Through analysis on application of stochastic error model in micro inertial device error modeling,introducing Yule-Walker equation to linear prediction problems,estimation of AR power spectral density is achieved.ARMA models are set up based on rational power spectral density of stochastic process.Actual data validates the effectiveness of modeling methods.This method provides a new approach for modeling and analysis of stochastic errors.
出处 《传感器与微系统》 CSCD 北大核心 2013年第4期54-57,64,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61104036 61273081) 黑龙江省博士后科研启动基金资助项目(LBH-Q10118)
关键词 微惯性传感器 随机误差 自回归滑动平均模型 功率谱分析 micro inertial sensor stochastic error ARMA model power spectral analysis
  • 相关文献

参考文献9

  • 1张巍,孟士超,王喜龙.微惯性器件在导航工程中的应用研究[J].舰船电子工程,2009,29(5):74-76. 被引量:1
  • 2Jacques G, Aboehnagd N. Modeling the stochastic drift of a MEMS-based gyroscope in gyro/odometer/GPS integrated navi- gation[ J]. IEEE Transactions on Intelligent Transportation Sys- tems,2010,11(4) :856-876.
  • 3Minha P, Yang G. Error and performance analysis of MEMS- based inertial sensors with a tow-cost GPS receiver [ J ]. Sensors, 2008(8) :2240 -2261.
  • 4Chen W C,Gao G W,Wang J. The study of the MEMS gyro zero drift signal based on the adaptive Kahnan filter[ C ]//[EEE Inter- national Conference on Remote Sensing, Beijing,2010:92 -94.
  • 5Minha P. Error analysis and stochastic modeling of MEMS based inertial sensors for land vehicle navigation applications[D]. Cal- gary : University of Calgary ,2004 : 16 -21.
  • 6Magill D T. Optimal adaptive estimation of sampled stochastic processed[ J ]. 1EEE Trans on Automatic Control, 1965,10 ( 4 ) : 434 -439.
  • 7Petre S, Randolph M. Spectral analysis of signals [ M ]. Upper Saddle River, New Jersey : Prentice Ital1,2005.
  • 8Monson H H. Statistical signal processing and modeling [ M ] Georgia Institute of Technology : John Wiley & Sons, 1996.
  • 9James D H. Time series analysis [ M ]. Princeton, New Jersey: Princeton University I'ress:1994.

二级参考文献8

同被引文献69

  • 1张伟,胡昌华,焦李成.最小二乘AR模型的惯性器件故障预测[J].仪器仪表学报,2006,27(z2):1755-1757. 被引量:5
  • 2何传五.几种新型陀螺简介[J].航天控制,2001,19(2):73-80. 被引量:5
  • 3赵伟臣,付梦印,张启鸿,邓志红.微机械IMU数据建模与滤波方法研究[J].中国惯性技术学报,2005,13(6):13-17. 被引量:11
  • 4王新龙,陈涛,杜宇.基于ARMA模型的光纤陀螺漂移数据建模方法研究[J].弹箭与制导学报,2006,26(1):5-7. 被引量:22
  • 5李颖,陈兴林,宋申民.小波神经网络用于光纤陀螺漂移误差辨识[J].光学精密工程,2007,15(5):773-778. 被引量:9
  • 6Li J L, Fang J C, Du M.Error analysis and gyro-bias calibration of analytic coarse alignment for airborne POS[J].IEEE Transactions on Instrumentation and Measurement, 2012, 61(11):3058-3064.
  • 7Hua Z W, Rui L C.Correlation coefficient stationary series method for gyroscope random drift[C]//Proceedings of 2011 6th IEEE Conference on Industrial Electronics and Applications.Piscataway, NJ:IEEE Press, 2011:2270-2273.
  • 8Sun H, Wu Q Z.Error analysis and algorithm implementation for an improved optical-electric tracking device based on MEMS[C]//International Symposium on Photoelectronic Detection and Imaging.Bellingham, WA:SPIE, 2013, 8907:1-7.
  • 9Li J L, Fang J C.Kinetics and design of a mechanically dithered ring laser gyroscope position and orientation system[J].IEEE Transactions on Instrumentation and Measurement, 2013, 62(1):210-220.
  • 10Li J L, Jiao F, Fang J C, et al.Temperature error modeling of RLG based on neural network optimized by PSO and regularization[J].IEEE Sensors Journal, 2014, 14(3):912-919.

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部