期刊文献+

Adomian分解法求解非线性分数阶积分微分方程 被引量:6

Adomian decomposition method for solving nonlinear integro-differential equations of fractional order
下载PDF
导出
摘要 求一类非线性分数阶Volterra积分微分方程数值解,给出了Adomian分解法.将Adomian多项式与分数阶积分定义有效结合,得到了Adomian级数解.收敛性分析证明了所得级数解收敛于精确解,并给出最大截断误差.结果表明:随着Adomian多项式个数的增加,数值解的精度也越来越高.数值算例表明了该方法的可行性和有效性.与已有的方法相比,Adomian分解法操作更有效、更方便. In order to obtain the numerical solution of a class of nonlinear Volterra integro-differential equations of fractional order, a computational method is presented in this paper, which is based on Adomian decomposition method. Also, the Adomian series solution is obtained by combining the Adomian polynomials with the definition of fractional order integral. The convergence analysis shows that the series solution converges to the exact solution, and the maximum absolute truncated error of the Adomian series solution is also given. The results show that the more Adomian polynomials, the higher the precision of the numerical solution. Numerical example demonstrates the validity and applicability of the method presented. Comparing with the known approach, the method presented is more efficient and more convenient.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第1期132-135,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(11101282)
关键词 分数阶 非线性 VOLTERRA积分微分方程 ADOMIAN分解法 ADOMIAN多项式 收敛性分析 误差估计 数值解 fractional order nonlinear Volterra integro-differential equation Adomian decomposition method Adomian polynomial convergence analysis error estimate numerical solution
  • 相关文献

参考文献14

  • 1Adomian G. Stochastic system[M]. New York: Academic Press, 1983.
  • 2Adomian G. Nonlinear stochastic operator equations[M].San Diego: Academic Press, 1986.
  • 3Adomian G, Nonlinear stochastic systems theory and applications to physics[M]. Dordrecht: Kluwer Academic, 1989.
  • 4那仁满都拉,胡建国.用Adomian分解法求解非线性轨道微分方程[J].大学物理,1998,17(3):1-3. 被引量:4
  • 5梁祖峰,唐晓艳.用Adomian分解法求解分数阻尼梁的解析解[J].应用数学和力学,2007,28(2):200-208. 被引量:10
  • 6I JunSheng Duan. New recurrence algorithms for the non-classic Adomian polynomials[J]. Computers and Mathematics with Applica- tions, 2011, 62 (5):2 961-2 977.
  • 7Duan JunSheng. New ideas for decomposing nonlinearities in differential equations[J]. Applied Mathematics and Computation. 2012,18 (2): 1 774-1 784.
  • 8Podlubny I. Franctional differential equations[M]. San Diego: Academic Press, 1999.
  • 9Rawashdeh E. Numerical solution of fractional integro-differential equations by collocation method[J]. Appl math Comput, 2006,13(7): 176-186.
  • 10尹建华,任建娅,仪明旭.Legendre小波求解非线性分数阶Fredholm积分微分方程[J].辽宁工程技术大学学报(自然科学版),2012,31(3):405-408. 被引量:21

二级参考文献37

  • 1方锦清.逆算符理论方法及其在非线性物理中的应用[J].物理学进展,1993,13(4):441-560. 被引量:32
  • 2Deng R,Davies P,Bajaj A K.A case study on the use of fractional derivatives:the low-frequency viscoelastic uni-directional behavior of polyurethane foam[J].Nonlinear Dynamic,2004,38(1/4):247-265.
  • 3Rossikhin Y A,Shitikova M V.Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders[J].The Shock and Vibration Digest,2004,36(1):3-26.
  • 4Agrawal O P.Analytical solution for stochastic response of a fractionally damped beam[J].ASME J Vibr Acoust,2004,126 (4):561-566.
  • 5Oldham K B,Spanier J.The Fractional Calculus[M].New York:Academic Press,1974.
  • 6Podlubny I.Fractional Differential Equations[M].San Diego:Academic Press,1999.
  • 7Suarez L E,Shokooh A.Response of systems with damping materials modeled using fractional calcuIus[J].ASME J Appl Mech Rev,1995,48(11):118-127.
  • 8Samko G,Kilbas A A,Marichev O I.Fractional Integrals and Derivatives:Theory and Applications[M].Yverdon:Gordon & Breach,1993.
  • 9Kemple S,Beyer H.Global and causal solutions of fractional differential equations[A].In:Transform Methods and Special Functions:Varna96,Proceedings of 2nd International Workshop[C].Singapore:Science Culture Technology Publishing,1997,210-216.
  • 10Kilbas A A,Pierantozzi T,Trujillo J J,et al.On the solution of fractional evolution equations[J].J Phys A:Math Gen,2004,37(9):3271-3283.

共引文献36

同被引文献44

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部