期刊文献+

一类广义非线性变分不等式解的存在性及迭代算法 被引量:3

Existence and iterative algorithm of solutions for a new class of generalized nonlinear variational inequalities
下载PDF
导出
摘要 解决一类新的广义非线性变分不等式解问题,定义了强单调映射和Lipschitz连续性的概念,利用辅助原理和压缩映射原理,研究了包含强制连续双线性型a(u,v)和非线性型b(u,v)的变分不等式解的存在性,同时构造了一种新的迭代算法,证明了迭代算法的收敛性.文中的结果推广和改进了文献中的相应结论. In order to solve a new class of generalized nonlinear variational inequalities prooblem, me aennlnon of strongly monotone mapping and Lipschitz continuous are given in this paper. Using the auxiliary principle technique, the existence theorem of solutions for this kind of generalized nonlinear variational inequalities, which involving a coercive continuous bilinear form a(u,v) and a nonlinear form b(u,v), is investigated. Furthermore, the author has developed a new iterative scheme, and discussed the convergence of the sequence generated by the iterative algorithm. The results in this study have extended and improved the corresponding studies documented.
作者 高海燕
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第1期136-139,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(71003015 71273043 71273044) 辽宁省教育厅创新团队基金资助项目(2008T054) 教育部人文社科一般基金资助项目(09YJA790028) 教育部人文社科重点基地重大基金资助项目(2009JJD790004)
关键词 广义非线性变分不等式 辅助原理技术 压缩映射 不动点 强单调 LIPSCHITZ连续 迭代算法 收敛性 generalized nonlinear variational inequality auxiliary principle technique contraction fixed point strongly monotone Lipschitz continuous iterative algorithm convergence
  • 相关文献

参考文献2

二级参考文献8

  • 1张石生,变分不等式和相补问题理论及应用,1991年
  • 2Fan Ky,Math Ann,1961年,142卷,303页
  • 3丁协平,Int J Comput Math Appl,1997年,34卷,9期,131页
  • 4丁协平,Appl Math Lett,1995年,8卷,1期,31页
  • 5Yao J C,Oper Res Lett,1994年,15卷,35页
  • 6丁协平,Colloq Math,1992年,63卷,2期,233页
  • 7Harker P T,Math Program B,1990年,48卷,161页
  • 8Zhou J X,J Math Anal Appl,1988年,132卷,213页

共引文献26

同被引文献19

  • 1高雷阜,王金希,吴洪涛.Banach空间中一类变分包含解的存在性和唯一性[J].辽宁工程技术大学学报(自然科学版),2012,31(2):252-255. 被引量:8
  • 2何炳生.一类广义线性变分不等式的求解与应用[J].中国科学(A辑),1995,25(9):939-945. 被引量:11
  • 3张石生,向淑文.一类拟双线性型变分不等式解的存在性[J].系统科学与数学,1996,16(2):136-140. 被引量:14
  • 4Hu Yuda.Applied Multiobjective Optimization[M].Shanghai:Shanghai Science and Technology Press, 1990.
  • 5Paul Tseng.Altemating projection-proximal methods for convex programming and variational inequalities[J].Society for Industrial and Applied Mathematics Journal on Optimization, 1997,7(4):951-965.
  • 6Naihua Xiu,Zhang Jianzhong.Some rencent advances in projection-type methods for Variational inequalities[J].Journal of Computational and Applied Mathematics,2003,152:559-585.
  • 7He Bingsheng,Yang Zhenhua,Yuan Xiaoming.An approximare proximal- extragradient type method for monotone variational inequalities[J]. Journal of Mathematical Analysis and Applications,2004(300):362-374.
  • 8Yair Censor, Aviv Gibali,Simeon Reich.Algorithms for the split variational inequality pmblem[J].Numerical Algorithm,2012(59):301-323.
  • 9Censor Y, Gibali A,Reich S.The subgradient extragradient method for solving variational inequalities in hilbert spaee[J].Journal of Optimization Theory and Applications,2011 ( 148):318-335.
  • 10Facchinei F, Pang J S.Finite-Dimensional Variational Inequalities and Complementarity Problems[M].Berlin:Springer Verlag,2003.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部