期刊文献+

Motion of current filaments in avalanching PIN diodes 被引量:1

Motion of current filaments in avalanching PIN diodes
原文传递
导出
摘要 The motion of current filaments in avalanching PIN diodes has been investigated in this paper by 2D transient numerical simulations. The simulation results show that the filament can move along the length of the PIN diode back and forth when the self-heating effect is considered. The voltage waveform varies periodically due to the motion of the filament. The filament motion is driven by the temperature gradient in the filament due to the negative temperature dependence of the impact ionization rates. Contrary to the traditional understanding that current filamentation is a potential cause of thermal destruction, it is shown in this paper that the thermally-driven motion of current filaments leads to the homogenization of temperature in the diode and is expected to have a positive influence on the failure threshold of the PIN diode. The motion of current filaments in avalanching PIN diodes has been investigated in this paper by 2D transient numerical simulations. The simulation results show that the filament can move along the length of the PIN diode back and forth when the self-heating effect is considered. The voltage waveform varies periodically due to the motion of the filament. The filament motion is driven by the temperature gradient in the filament due to the negative temperature dependence of the impact ionization rates. Contrary to the traditional understanding that current filamentation is a potential cause of thermal destruction, it is shown in this paper that the thermally-driven motion of current filaments leads to the homogenization of temperature in the diode and is expected to have a positive influence on the failure threshold of the PIN diode.
出处 《Journal of Semiconductors》 EI CAS CSCD 2013年第4期37-41,共5页 半导体学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.60776034)
关键词 PIN diode moving current filament self-heating effects impact ionization thermal runaway PIN diode moving current filament self-heating effects impact ionization thermal runaway
  • 相关文献

参考文献16

  • 1Sze S M. Physics of semiconductor devices. New York: Wiley, 1981.
  • 2Cory R. PIN-limiter diodes effectively protect receivers. EDN, 2004,49(26): 59.
  • 3Muller M W, Guckel H. Negative resistance and filamentary currents in avalanching silicon p + -i-n + junctions. IEEE Trans Electron Devices, 1968, 15(8): 560.
  • 4Symanczyk R, Gaelings S, Jager D. Observation of spatio-temporal structures due to current filaments in Si pin diodes. Phys Lett A, 1991, 160(4): 397.
  • 5Rodin P. Theory of traveling filaments in bistable semiconductor structures. Phys Rev B, 2004, 69(4): 045301.
  • 6Oetjen J, Jungblut R, Kuhlmann U, et al. Current filamentation in bipolar power devices during dynamic avalanche breakdown. Solid-State Electron, 2000, 44(1): 117.
  • 7Niedernostheide F J, Falck E, Schulze H J, et al. Current-density patterns induced by avalanche injection phenomena in high-voltage diodes during turn-off. Ann Phys (Leipzig), 2004, 13(7/8): 414.
  • 8Niedernostheide F J, Schulze H 1. Studies on dynamic avalanche and current filaments in high-voltage diodes. Phys D: Nonlinear Phenomena, 2004, 199(112): 129.
  • 9Milady S, Silber D, Niedernostheide F J, et al. Different types of avalanche-induced moving current filaments under the influence of doping inhomogeneities. Microe1ectron J, 2008, 39(6): 857.
  • 10Lutz J, Baburske R. Dynamic avalanche in bipolar power devices. Microe1ectron Reliab, 2012, 52(3): 475.

同被引文献14

  • 1周怀安,杜正伟,龚克.双极型晶体管损坏与强电磁脉冲注入位置的关系[J].强激光与粒子束,2006,18(4):689-692. 被引量:19
  • 2陈曦,杜正伟,龚克.外电路在电磁脉冲对双极型晶体管作用过程中的影响[J].强激光与粒子束,2007,19(7):1197-1202. 被引量:15
  • 3Radasky W A, Baum C E, Wik M W. Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromag- netic intederence(IEMl)[J]. IEEE Trans Electromagnetic Compatibility, 2004, 46(3) : 314-311.
  • 4Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwaves: summary of test experience[J]. IEEE Trans Electromagnetic Compatibility, 2004, 46(3): 396-403.
  • 5Kim K, Iliadis A A. Critical upsets of CMOS inverters in static operation due to high-power microwave interference[J]. IEEE Trans Elec tromagnetic Compatibility, 2007, 49(4) : 876-885.
  • 6Chai Changchun, Ma Zhenyang, Ren Xingrong, et al. Hardening measures for bipolar transistors against microwave-induced damage[J]. Chinese Physics B, 2013, 22: 68502.
  • 7Kim K, Iliadis A A. Latch-up effects in CMOS inverters due to high power pulsed electromagnetic interference[J]. Solid-State Electronics, 2008, 52(10): 1589-1593.
  • 8Moulthrop A A, Muha M S, Dybdal R B, et al. HPM damage thresholds of GaAs FETs and HEMTs[R]. TR-0090(5925-02)-1, 1992.
  • 9Zhang Cunbo, Wang Honggang, Zhang Jiande, et al. Experiment and simulation of the nonlinear and transient responses of GaAs PHEMT injected with microwave pulses[J]. IEEE Trans Electromagnetic Compatibility, 2015, 57(5): 1132-1138.
  • 10Yu Xinhai, Chai Changehun, Liu Yang, et al. Simulation and experimental study of high power microwave damage effect on A1GaAs/In GaAs pseudomorphic high electron mobility transistor[J]. Chinese Physics B, 2015, 24: 048502.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部