期刊文献+

二次函数混沌特性分析及其图像加密应用 被引量:3

Chaos Character Analysis of Quadratic Function and Its Application in Image Encryption
下载PDF
导出
摘要 在图像加密应用中,为抵抗攻击需要构造更多的混沌序列。针对该问题,研究二次函数在单位区域内的混沌问题,分析论证标准单位二次函数是Li-Yorke混沌的,在特殊情况下是Devaney混沌的。讨论当单位区域内二次函数的最大值小于1时的混沌状况,绘制能够产生混沌的控制点近似区域,计算单位区域内二次函数的周期点以及Lyapunov指数,并将交叉迭代构造的序列用于图像加密。实验结果表明,使用二次曲线构造的混沌序列用于图像加密可获得较好的效果。 In the research of image encryption application, in order to resist the attacks, it needs to construct more chaotic sequence. Aiming at this problem, this paper studies the quadratic problem of quadratic function in unit area. The study finds that, a large number of the quadratic mapping is Li-Yorke chaos under certain conditions, some special cases is Devaney chaotic. It discusses chaos condition when unit area of the quadratic fimction value is less than 1, draws approximate area of control point which can generate chaos, computes cycle point of quadratic function in unit area and Lyapunov exponent, and generates a chaotic sequence which is available for image encryption. Experimental results show that constructing chaotic sequence by the quadratic curve for image encryption has a good result.
出处 《计算机工程》 CAS CSCD 2013年第4期5-8,共4页 Computer Engineering
基金 大连大学博士科研基金资助项目(20110302307)
关键词 图像加密 混沌 二次函数 有理贝塞尔曲线 平面单位区域 交叉迭代 image encryption chaos quadratic function rational B6zier curve planar unit area cross-iteration
  • 相关文献

参考文献17

  • 1Chen Yichuan. Family of Invariant Cantor Sets as Orbits of Differential Equations[J]. International Journal of Bifurcation and Chaos, 2008, 18(7): 1825-1843.
  • 2G6ra P, Boyarsky A. On the Significance of the Tent Map[J]. International Journal of Bifurcation and Chaos, 2003, 13(5): 1299-1301.
  • 3Lai Dejian, Chen Guanrong. Generating Different Statis- tical Distributions by the Chaotic Skew Tent Map[J]. International Journal of Bifurcation and Chaos, 2000, 10(6): 1509-1512.
  • 4于万波,杨雪松,魏小鹏.单位平面区域上随机折线映射及其交叉迭代的混沌分析[J].计算机应用研究,2011,28(10):3837-3841. 被引量:4
  • 5Li Changpin, Chen Guanrong. On the Marotto-Li-Chen Theorem and Its Application to Chaotification of Multi-dimensional Discrete Dynamical Systems[J]. Chaos, Solitons & Fractal, 2003, 18(4): 807-817.
  • 6Wang Xiaofan, Chen Guanrong, Yu Xinghuo. Anticontrol of Chaos in Continuous-time Systems via Time-delay Feedback[J]. Chaos, Solitons & Fractal, 2000, 15(2): 771-779.
  • 7Chen Guanrong, Huang Lin, Huang Yu. Chaotic Behavior of Interval Maps and Total Variations of Iterates[J]. International Journal of Bifurcation and Chaos, 2004, 14(7): 2161-2186.
  • 8Zhang Xu, Shi Yuming, Chen Guam'ong. Constructing Chaotic Polynomial Maps[J]. International Journal of Bifurcation and Chaos, 2009, 19(2): 531-543.
  • 9Li Tianyan, York J A. Period Three Implies Chaos[J]. American Mathematical Monthly, 1975, 82(10): 985-992.
  • 10Brooks B J, Cairns J, Cairen S, et al, On Devaney's Definition of Chaos[J]. AmeriCan Mathematical Monthly, 1992, 99(4): 332-334.

二级参考文献15

  • 1CHEN Yi-chuan. Family of invariant cantor sets as orbits of differenti- al equations[ J]. International Journal of Bifurcation and Chaos, 2008,18 (7) : 1825-1843.
  • 2GORA P, B OYARSKY A. On the significance of the tent map [ J ]. In- ternational ,Journal of Bifurcation and Chaos ,2003,13 (5) :1299- 1301.
  • 3LAI De-jian, CHEN Guang-rong. Generating different statistical distri- butions by the chaotic skew tent map [J]. International Journal of Bifurcation and Chaos,2000,10 (6) : 1509-1512.
  • 4LI T Y, YORK J A. Period three implies chaos [ J ]. The American Mathematical Monthly, 1975,82 (10) :985.
  • 5LI Chang-pin, CHEN Guan-rong. On the Marotto-Li-Chen theorem and its application to chaotification of multi-dimensional discrete dynamical systems [ J ]. Chaos, Solitons & Fractal,2003,18 (4) : 807-817.
  • 6WANG Xiao-fan, CHEN Guan-rong, YU Xing-huo. Anticontrol of cha- os in continuous-time systems via time-delay feedback [ J ]. Chaos, 2000,10(4) :771-779.
  • 7CHEN G, HUANG Ting-wen, HUANG Yu. Chaotic behavior of inter- val maps and total variations of iterates[ J]. International ,Journal of Bifurcation and Chaos,2004,14(7) : 2.161-2186.
  • 8ZHANG Xu, SHI Yu-ming, CHEN Guan-rong. Constructing chaotic polynomial maps [ J ]. International Journal of Bifurcation and Chaos,2009,19(2) :531-543.
  • 9WIGGINS S. Introduction to applied nonlinear dynamical systems and chaos[ M]. New York:Springer-Verlag,1990.
  • 10WANG Li-dong, HUANG Gui-feng, HUAN Song-mei. Distributional chaos in a sequence [ J ]. Nonlinear Analysis: Theory, Methods & Applications ,2007,67 ( 7 ) : 2131 - 2136.

共引文献3

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部