期刊文献+

一个第二类变分不等式的有限元逼近 被引量:2

THE FINITE ELEMENT APPROXIMATION TO A SECOND TYPE VARIATIONAL INEQUALITY
原文传递
导出
摘要 The finite element methods for the second type variational inequality deduced from the simplified contact problem with friction have been considered by R.Glowinski et al [2]. In this note, the modified finite element method with numerical integration for this problem is considered, and the error estimate is improved. The finite element methods for the second type variational inequality deduced from the simplified contact problem with friction have been considered by R.Glowinski et al [2]. In this note, the modified finite element method with numerical integration for this problem is considered, and the error estimate is improved.
作者 王烈衡
出处 《计算数学》 CSCD 北大核心 2000年第3期339-344,共6页 Mathematica Numerica Sinica
基金 国家自然科学基金
关键词 第二类变分不等式 数值积分 有限元方法 逼近 Second type variational inequality, numerical integration, finite element method
  • 相关文献

参考文献2

  • 1Xu J,Penn. State, Dept. Math. RepAM-48,1989年
  • 2周叔子,变分不等式及其有限元方法,1988年

同被引文献11

  • 1周天孝.利用依赖格网范数的有限元Lp误差估计[J].计算数学,1982,4(4):398-408.
  • 2周叔子.变分不等式及其有限元方法[M].长沙:湖南大学出版社,1994..
  • 3[1]Kornhuber R.Monotone multigrid methods for elliptic variational inequality Ⅱ,Numer Math,1996 ;72 (1):481-499
  • 4[3]Elliot C M.On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem IMA J numer Anal,1981;1:115-125
  • 5[4]Ciarlet P G,Lions J L.Handbook of numericala nalysis,Vol.Ⅱ,finite element methods (Part1),North-Holland,1991
  • 6[5]Ciarlet P G,Lions J L,Tremolieres R.Numerical Analysis of variational inequalities.North-Holland,1981
  • 7P.G.Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
  • 8P.Grisvard, Behavior of solutions of an elliptic boundary value problem in polygonal or polyhedral domains, Numerical Solution of Partial Differential Equations Ⅲ, ed. By B.Hubbard, Academic Press, New York, 1976, 207-274.
  • 9R.Glowinski, J.L.Lions and R.Tremolieres, Numerical Analysis of Variational Inequalities,North-Holland, Amsterdam, 1981.
  • 10N.Kikuchi and J.T.Oden, Contact Problem in Elasticity, SIAM Philadelphia, 1988.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部