期刊文献+

基于方向变换和方向波的图像去噪

Image Denoising Based on Direction Transformation and Directionlets
下载PDF
导出
摘要 针对小波变换处理二维信号时存在方向缺失、不能达到最优逼近的缺点,借鉴方向波中处理边界问题的思想,利用方向滤波器组中的采样矩阵实现图像旋转。将具有一定夹角的2个方向利用采样矩阵表示,使这2个方向分别旋转投影成为水平方向和垂直方向。考虑到小波分析擅长处理纹理特征的优点,结合方向变换与小波变换,将对角线信息进行优化表示。仿真实验验证该方法可显著改善图像的视觉效果。 Aiming at the disadvantages of wavelets, which exist the absence of directions and cannot achieve the best approximation when deal with 2D signals. The idea of processing edge problem in directionlets is introduced. Sample matrix in directional filter banks is used to perform the rotation for images and presentation for two directions with angular, which makes the two directions project be vertical and horizontal direction. At the same time considering that wavelets are good at dealing with texture features, combine the direction transformation with wavelet transform further. The better presentation for diagonal information is achieved. Simulation experimental results show that the method can significantly improve the visual effect of the image.
出处 《计算机工程》 CAS CSCD 2013年第4期254-257,262,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61100173 61201416) 陕西省教育厅科学研究计划基金资助项目(11JK1028) 西安市科技计划基金资助项目(CXY1127(3))
关键词 方向变换 方向波 小波变换 各向异性 方向滤波器组 图像去噪 direction transformation directionlets wavelet transform anisotropism directional filter bank image denoising
  • 相关文献

参考文献14

  • 1Lee Tai-Sing. Image Representation Using 2D Gabor Wavelets[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1996 18(10): 959-971.
  • 2Simoncelli E P, Freeman W T Adelson E H, et al. ShHiable Multiscale Transforms[J]. IEEE Trans. on Information Theory 1992 38(2): 587-607.
  • 3Bamberger R H, Smith M J T. A Filter Bank lbr The Directional Decomposition of Images: Theory and Design[J]. IEEE Trans. on Signal Processing, 1992, 40(4): 882-893.
  • 4Viscito E, Allebach ,I P. The Analysis and Design of Multidimensional FIR Perfect Reconstruction Filter Banks for Arbitrary Sarnpling Lattices[J]. IEEE Trans. on Circuits and Systems, 1991,38(1): 29-41.
  • 5Kingsbury N. Complex Wavelets for Shill Invariant Analysis and Filtering of Signals[J]. Journal of Applied and Computational Harmonic Analysis, 2001, 10(3): 234- 253.
  • 6Femandes F, Spaendonck R, Burrus C. A New Framework for Complex Wavelet Transforms[J]. IEEE Trans. on Signal Processing, 2003, 51(7): 1825-1837.
  • 7Fernandes F, Spaendonck R, Burrus C. Multidimensional, Mapping-based Complex Wavelet Transforms[J]. IEEE Trans. on Image Processing, 2005, 14(1): 110-124.
  • 8Starck J L, Cands6s E J, Donoho D L. The Curvelet Transform for Image Denoising[J]. IEEE Trans. on Image Processing, 2002, 11 (6): 670-684.
  • 9Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representa- tion[J]. IEEE Trans. on Image Processing, 2005, 14(12): 2091-2106.
  • 10Velisavljevic V, Beferull-Lozano B, Vetterli M, et al. Directionlets: Anisotropic Multidirectional Representation with Separable Filtering[J]. IEEE Trans. on Image Processing, 2006, 15(7): 1916-1933.

二级参考文献14

  • 1潘蓉.小波域内的盲水印提取[J].光子学报,2006,35(10):1613-1616. 被引量:2
  • 2Kang Xian-gui, Zeng Wen-jun, and Huang Ji-wu. A multi-band wavelet watermarking scheme[J]. International Journal of Network Security, 2008, 6(2): 121-126.
  • 3Jayaiakshmi M, Merchant S N, and Desai U B. Digital watermarking in contourlet domain[C]. Proc. of 18th International Conference Pattern Recognition, Hongkong, Aug. 20 24, 2006: 861-864.
  • 4Song Hao-hao, Yu Song-yu, Yang Xiao-kang, Song Li, and Wang Chen. Contourlet-based image adaptive watermarking [J]. Signal Processing: Image Communication, 2008, 23(3): 162-178.
  • 5Sahraeian S M E, Akhaee M A, Hejazi S A, and Marvasti F. Contourlet based image watermarking using optimum detector in the noisy environment[C]. Proc. of the 2008 IEEE International Conference on Image Processing, San Diego, California, USA, 2008:429-432.
  • 6Minh D N and Martin V. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
  • 7Velisavljevic' V, Beferull-Lozano B, and Vetterli M, et al.. Space-frequency quantization for image compression with Directionlets[J]. IEEE Transactions on Image Processing, 2007, 16(7): 1761-1773.
  • 8Velisavljevic'V, Beferull-Lozano B, and Vetterli M, et al.. Directionlets: anisotropic multi-directional representation with separable filtering[J]. IEEE Transactions on Image Processing, 2006, 15(7): 1916-1933.
  • 9Wu Jia-ji, Shi Guang-ming, Niu Yi, and Jiao Li-cheng. Laplacian pyramid-based down sampling combined with directionlet interpolation for low-bit rate compression[C]. MIPPR 2009: Remote Sensing and GIS Data Processing and Applications, Yichang, China, Oct.30-Nov.1, 2009, SPIE 7498, 749598: 1-8.
  • 10Ma Ming, Ruan Feng, Zhou Ze-ming, and Zhang Peng. Adaptive speckle reduction in SAR images combining Directionlet transform with local texture direction[C]. MIPPR 2009, Automatic Target Recognition and Image Analysis, Yichang, China, Oct.30-Nov.1, 2009, SPIE 7495, 749542: 636-640.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部