期刊文献+

基于稀疏表示的图像模糊度评价方法 被引量:3

Image Fuzzy Degree Assessment Method Based on Sparse Representation
下载PDF
导出
摘要 根据自然图像稀疏表示基函数类似Vl区简单细胞感受野的反应特性,以及系数反映神经元响应程度的特性,提出基于稀疏表示的图像模糊度评价方法。将输入图像分成互不重叠的块,采用训练好的词典对各块进行稀疏分解,并计算每块的关注度系数。将每块稀疏系数的p范数与关注度系数的加权和作为模糊度评价的依据。实验结果表明,该算法计算的模糊度相对于图像的模糊程度是单调的,具有较好的抗噪性,符合人眼视觉系统特性。 Based on the facts that natural images can be sparsely coded, and their basis functions are similar to the particular shapes of V1 simple-cell receptive fields and the sparse coefficients correspond to the response properties of visual neurons for the fixed patterns, a novel image fuzzy degree assessment method based on sparse representation is proposed. The flow chart of the proposed method is to divide the input image into no overlapped patches. The coefficient vectors and the visual attention weights of each patch are computed, and the fuzzy degree is represented by the linear superposition of the p-norm of sparse coefficient vectors and visual attention weights of each patch. Experimental results show that the proposed method is monotonic, robust to additive noises, and also consistent with human visual system.
出处 《计算机工程》 CAS CSCD 2013年第4期267-271,共5页 Computer Engineering
基金 教育部博士点基金资助项目(20070151014) 中央高校基本科研业务费专项基金资助项目(2012JC038)
关键词 图像质量评价 模糊度 图像稀疏表示 向量范数 人眼视觉系统 感受野 image quality assessment fuzzy degree image sparse representation vector norm human visual system receptivefield
  • 相关文献

参考文献20

  • 1ITU. Methodology for The Subjective Assessment of The Quality of Television Pictures[R]. Tech. Rep.: ITU-R BT 500-11, 2002.
  • 2Lin Weisi, Jay K C C. Perceptual Visual Quality Metrics: A Survey[J]. Journal of Visual Communication and Image Representation, 2011, 22(4): 297-312.
  • 3魏政刚,袁杰辉,蔡元龙.图象质量评价方法的历史、现状和未来[J].中国图象图形学报(A辑),1998,3(5):386-389. 被引量:36
  • 4周景超,戴汝为,肖柏华.图像质量评价研究综述[J].计算机科学,2008,35(7):1-4. 被引量:72
  • 5Batten C F. Auto-focusing and Astigmatism Correction in the Scanning Electron Microscope[D]. Cambridge, UK: University of Cambridge, 2000.
  • 6Sadaka N G, Karam L J, Ferzli R. No-reference Perceptual Image Sharpness Metric Based on Saliency-weighted Fovea Pooling[C]//Proc. of International Conference on Image Processing. San Francisco, USA: IEEE Press, 2008.
  • 7Hassen R, Wang Zhou, Salama M. No-reference Image Sharpness Assessment Based on Local Phase Coherence Measurement[C]//Proc. of International Conference on Acoustics, Speech and Signal Processing. Texas, USA: IEEE Press, 2010.
  • 8Crete F, Dolmiere T, Ladret P, et al. The Blur Effect: Perception and Estimation with a New No-reference Perceptual Blur Metric[C]//Proc. of SPIE Conference onHuman Vision and Electronic Imaging. [S. 1.]: SPIE Press, 2007.
  • 9Ferzli R, Karam L J. A No-reference Objective Image Sharpness Metric Based On The Notion of Just Noticeable Blur(JNB)[J]. IEEE Trans. on Image Processing, 2009, 18(4): 717-728.
  • 10Ferzli R, Karam L J. A No-reference Image Blur Metric Based on the Cumulative Probability of Blur Detection (CPBD)[J]. IEEE Trans. on Image Processing, 2011, 20(9): 2678-2683.

二级参考文献41

共引文献102

同被引文献60

  • 1蒋海峰,王磊,韩文元,杨丰艳.交通标志反光膜逆反射性能与视认性关系试验研究[J].公路交通科技(应用技术版),2009,5(3):19-24. 被引量:14
  • 2Dalal N,Triggs B.Histograms of Oriented Gradients for Human Detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2005:886-893.
  • 3Wang Xiaoyu,Han T X,Yan Shuicheng.An HOG-LBP Human Detector with Partial Occlusion Handling[C]//Proceedings of the12th IEEE Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2009:32-39.
  • 4Maji S,Berg A,Malik J.Classification Using Intersection Kernel Support Vector Machines is Efficient[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2008:1-8.
  • 5Wu Jianxin,Geyer C,Rehg J M.Real-time Human Detection Using Contour Cues[C]//Proceedings of International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2011:860-867.
  • 6Wu Jianxin,Rehg J M.CENTRIST:A Visual Descriptor for Scene Categorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1489-1501.
  • 7Benenson R,Mathias M,Timofte R,et al.Pedestrian Detection at100Frames per Second[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2012:2903-2910.
  • 8Ouyang Wanli,Wang Xiaogang.Single-pedestrian Detection Aided by Multi-pedestrian Detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2013:3198-3205.
  • 9Donoho D L.Compressed Sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 10Candes E,Romberg J,Tao T.Robust Uncertainty Principles:Exact Signal Reconstruction from Highly Incomplete Frequency Information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部