期刊文献+

关于完全正矩阵的几点注记(英文)

Some Remarks on Completely Positive Matrices
下载PDF
导出
摘要 本文给出了一个 n×n非负、对称、弱对角占优矩阵 A为完全正的一个充分条件 .我们还给出了较好的算法 ,用以获得关于矩阵 A(当 A为完全正时 )的分解指数的一个上界 . A nonnegative n×n positive semidefinite matrix A is called doubly nonnegative, and A is called completely positive if A can be factored as A=BB′ for some (not necessarily square) entrywise nonnegative matrix B. The smallest number of columns of B is called the factorization index of A. This paper presents a sufficient condition for a weakly diagonally dominant nonnegative symmetric matrix to be completely positive. Also a revised algorithm is presented for obtaining a better upper bound for its factorization index.
作者 徐常青
机构地区 安徽大学数学系
出处 《工科数学》 2000年第3期22-27,共6页 Journal of Mathematics For Technology
基金 Supported by Anhui Educational Committee( 99JL0 0 0 9)
关键词 完全正矩阵 弱对角占优矩阵 分解指数 上界 complete positivity factorization index diagonal dominance
  • 相关文献

参考文献8

  • 1Jacobson D H. Extensions of Linear-Quadratic Control, Optimization and Matrix Theory[M]. Academic, New York, 1977.
  • 2Gray L J and Wilson D G, Nonnegative factorization of positive semidefinite nonnegative matrices[J]. Lin. Algeb.App]. , 1980,31 :119-127.
  • 3Gammacher F R. The Theory of Matrices, vol. 2[M]. Chelsea, New York, 1980.
  • 4Hall M JR. Combinatorial Theory[M]. Blaisdell, Lexington, 1967.
  • 5Keykobord M. On nonnegative factorization of matrices[J]. Lin. Algeb. Appl. , 1987, 96:27-33.
  • 6Berrnan A and Hershkowitz D. Combinatorial Results on completely positive matrices[J]. Lin. Algebr. Appl.,1987, 95: 111-125.
  • 7Salee L and Zanardo P. Completely positive matrices and Positivity of Least Squares Solutions[J]. Lin. Algebr.Appl. , 1993, 178: 201-216.
  • 8Harary F. Graph Theory[M]. Addison, Wesley, 1972.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部