摘要
本文研究一类可逆生化反应的数学模型 :dxdt=a-( b+1 ) x+x2 y-cx3,dydt=bx-x2 y+cx3.应用微分方程定性理论 ,完整地解决了该系统极限环的存在性、唯一性和不存在性等问题 .
We are devoted to study the following system of reversible oneorder biochemical reaction model: d x d t = a-(b+1)x+x 2y-cx 3, d y d t = bx-x 2y+cx 3. By using ordinary differential equation qualitative theory, the conditions of the existence, uniqueness and nonexistence of limit cycles on this system are obtained completely.
出处
《工科数学》
2000年第3期32-34,共3页
Journal of Mathematics For Technology
关键词
可逆生化反应
数学模型
极限环
定性分析
reversible biochemical reaction
mathematical model
limit cycles