LINEAR SKOROHOD STOCHASTIC DIFFERENTIAL EQUATIONS IN THE TWO PARAMETER CASE
LINEAR SKOROHOD STOCHASTIC DIFFERENTIAL EQUATIONS IN THE TWO PARAMETER CASE
摘要
Using the method of the Wiener It chaos decomposition,we construct a solution of a linear Skorohod stochastic differential equation in the two parameter case.
Using the method of the Wiener It chaos decomposition,we construct a solution of a linear Skorohod stochastic differential equation in the two parameter case.
出处
《数学理论与应用》
2000年第2期1-10,共10页
Mathematical Theory and Applications
关键词
线性Skorohod随机微分方程
双参数
解
ITO公式
and phrases It formula,Malliavin calculus,two parameter Skorohod integral,Wiener It chaos decomposition.
参考文献10
-
1Rainer Buckdahn.Skorohod stochastic differential equations of diffusion type[J].Probability Theory and Related Fields.1992(3)
-
2Rainer Buckdahn.Linear skorohod stochastic differential equations[J].Probability Theory and Related Fields.1991(2)
-
3D. Nualart,E. Pardoux.Stochastic calculus with anticipating integrands[J].Probability Theory and Related Fields.1988(4)
-
4Ito K.Multiple Wiener integrals[].Journal of the Mathematical Society of Japan.1951
-
5Platen,E.,Wagner,W.On a Taylor formula for a class of Ito processes[].Probability Math Statistics.1982
-
6Sekiguchi,T.,Shiota,Y.2L-theory of noncausal stochastic integrals[].Math Rep Toyama Univ.1985
-
7Nualart,D.The Malliavin Calculus and Related Topics[]..1955
-
8Shiota,Y.A linear stochastic integral equation containing the extended Itointegral[].MathRepToyama Univ.1986
-
9Wong,E,Zakai,M.Differentiation formulas for stochastic integrals in the plane[].StochasticProcesses Appl.1978
-
10Yeh,J.Two- parameter stochastic differential equations[].Real and stochastic analysis.1986
-
1王艳清.高维Wiener sausage的强逼近[J].中国科学:数学,2011,41(9):789-796. 被引量:1
-
2黄建华,李劲.Lévy过程驱动的随机非牛顿流的鞅解[J].国防科技大学学报,2012,34(5):169-174.
-
3赵治涛,吴从炘,张旭.模糊数空间中的收敛关系[J].黑龙江大学自然科学学报,2010,27(2):197-200.
-
4龙红卫.ANTICIPATING QUADRANT AND SYMMETRIC INTEGRALS IN THE PLANE WITH APPLICATION TO WIENER SPACE[J].Acta Mathematica Scientia,1997,17(1):1-11.
-
5高付清.局部平方可积鞅的Chung重对数律[J].科学通报,1998,43(20):2156-2162. 被引量:4
-
6王秀云.关于相依随机变量弱不变原理的收敛速度[J].应用概率统计,1993,9(4):423-430.
-
7商胜武,杜娟,蹇明,刘春晖.局部平方可积鞅的泛函重对数律[J].武汉理工大学学报,2003,25(4):80-83.
-
8王文胜.相伴的高斯随机变量序列的一个强不变原理[J].应用概率统计,2006,22(4):347-357.
-
9吴翰.Wiener空间的展开与非适应随机演算[J].应用概率统计,1997,13(3):264-274. 被引量:1
-
10王文胜.负相伴高斯随机变量序列的一个强不变原理[J].数学学报(中文版),2009,52(4):631-640.