期刊文献+

Banach空间中二阶非线性脉冲微分-积分方程的初值问题 被引量:5

Initial Value Problems for Nonlinear Second Order Impulsive Integro-differential Equations in Banach Space
下载PDF
导出
摘要 通过引进等价的范数,应用Banach不动点定理,在较宽松的条件下,获得了Banach空间中 二阶非线性脉冲微分-积分方程初值问题解的存在与唯一性及解的迭代逼近.对文[5](J.Math. Anal.Appl.200(1996),1—13)相应于d0=0的结果作了重要改进和推广.该文条件易于判断,方 法也本质地不同于文[5]. Through intrducing the equivalent norm,by applying Banach fixed theorem,un- der simpler conditions,the author has obtained existence and uniqueness and iterative approximation of solution for initial value problems of nonlinear second order impulsive integro-differential equations in Banach space,and improved and generalized the corresponding results of paper [5] for d0=0 (J. Math. Anal. Appl. 200(1996), 1 - 13). The assumed condition in present paper is easy to be judged and the method is different essentially from the one in paper [5].
作者 柴国庆
出处 《数学物理学报(A辑)》 CSCD 北大核心 2000年第3期351-359,共9页 Acta Mathematica Scientia
基金 湖北省高等学校自然科学研究重点项目基金资助(98A040)
关键词 非线性脉冲方程 初值问题 BANACH不动点定理 Nonlinear impulsive equation Initial value problem Banach fixed point theorem.
  • 相关文献

参考文献1

二级参考文献4

共引文献7

同被引文献28

  • 1徐玉梅.Banach空间中二阶非线性脉冲微分-积分方程初值问题的整体解[J].数学物理学报(A辑),2005,25(1):47-56. 被引量:4
  • 2GUO DAJUN.INITIAL VALUE PROBLEMS FOR SECOND ORDER IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES[J].Chinese Annals of Mathematics,Series B,1997,18(4):439-448. 被引量:28
  • 3[1]Liu X,Guo D.Initial value problems for first order impulsive integro-differential equations in Banach spaces[J].Comm.Appl.nonlinear Anal.,1995,2:65~83.
  • 4[3]Guo Dajun.Second order impulsive integro-differention equations on unbounded domains in Banach spaces[J].Nonlinear Analysis,1999,41:465~476.
  • 5[6]Guo Dajun,Lakshmikantham V.Nonlinear Integral Equations in Abstract Spaces[M].Dordrecht:Kluwer Academic Publishers,1996.
  • 6Wing-Sum Cheung, Jingli Ren Positive solutions for m-point boundary value problems[J]. Math Anal Appl, 2005(303): 565-575.
  • 7Meiqiang Feng, Huihui Pang. A class of three -point boundary value problem for second-order impulsive Integro-diiTerential equations in Banach spaces[J]. Nonlinear analysis, 2009(7): 64-82.
  • 8Guo D J, Lakshmikantham V, Liu X Z. Nonlinear Integral Eguations in Abstract Spaces[M]. Kluwer Academic Pulishers, Dordrecht, 1996.
  • 9Guo D J. Multiple posive solutions for first order nonlinear impulsive integro-differential equations in a Banach space[J]. Appl Math Comput, 2003(143): 233-249.
  • 10Bing Liu. Positive solutions of a nonlinear four-point boundary value problems in Banach spaces [J]. Math Anal Appl, 2005, 305: 253-276.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部