期刊文献+

具有渐近线性的非线性项的奇异半线性椭圆方程的正解

Positive Solutions for Singular Semilinear Elliptic Eqautions with Asymptotically Linear Nonlinearity
下载PDF
导出
摘要 用临界点理论中的山路引理得到具有Hardy项和原点及无穷原点都是渐近线性的半线性椭圆方程正解的存在性结果. Some existence results of positive solutions are obtained for solutions of semilinear elliptic equations with hardy terms and the general asymptotically linear non- linearity which is asymptotically linear at zero and at infinity by using the Mountain Pass Theorem in critical point theory.
作者 丁凌
出处 《湖北文理学院学报》 2013年第2期5-8,13,共5页 Journal of Hubei University of Arts and Science
基金 国家自然科学基金青年基金(11101347) 湖北省教育厅科学技术研究计划重点项目(D20112605 D20122501)
关键词 Hardy项 渐近线性 正解 山路引理 Hardy terms Asymptotically linear Positive solutions Mountain Pass Theorem
  • 相关文献

参考文献11

  • 1GHOUSSOUB N, KANG X S. Hardy-Sobolev critical elliptic equations with boundary singularities[J]. Ann. I. H. Poincare-AN., 2004, 21(6): 767-793.
  • 2DING LING TANG CHUNLE1. Multiple positive solutions for a critical quasilinear elliptic system[J]. Nonlinear Analysis, 2010, 72(5):2592-2607.
  • 3DING LIN TANG CHUNLE1. Hardy-Sobolev critical singular elliptic equations with mixed Dirichlet -Neumann boundary conditions[J]. Nonlinear Analysis, 2009, 71(9):3668-3689.
  • 4DING LING, TANG CHUNLEI. Existence and multiplicity of positive solutions for a class of semilinear elliptic equations involving Hardy term and Hardy-Sobolev critical exponents[J]. J. Math. Anal. Appl., 2008, 339(2): 1073-1083.
  • 5DING LING, TANG CHUNLEL Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Hardy-Sobolev critical exponents[J]. Applied Mathematics Letters, 2007, 20( 12): 1175-1183.
  • 6DING LING XIAO SH1WU. Solutions for singular elliptic systems involving Hardy-Sobolev critical nonlinearity[J]. Differential Equation and Applications, 2010, 2(2):227-240.
  • 7丁凌,唐春雷,孟义杰.具有Hardy项和Hardy-Sobolev临界指数的椭圆系统正解的存在性(英文)[J].西南大学学报(自然科学版),2008,30(12):13-17. 被引量:4
  • 8STUART C A, ZHOU lq S. Applying the mountain pass theorem to an asymptotically linear elliptic equation on RN [J]. Comm. Partial Differential Equations, 1999, 24 (9-10): 1731-1758.
  • 9ZHOU H S. Existence of asymptotically linear Dirichlet problem[J]. Nonlinear Analysis, 2001, 44(7): 909-918.
  • 10MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian Systems[G]//Applied Mathematical Sciences. New York: Springer-Veflag, 1989.

二级参考文献5

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部