期刊文献+

网络全端可靠性仿真算法研究

Simulation Algorithm Approaches for All-terminal Network Reliability
下载PDF
导出
摘要 全端可靠性是指整个网络所有端点之间保持连通的概率,如何准确计算网络可靠性是个NP-hard问题.文章通过选取逐次事件估计量,研究了网络可靠性的三种仿真算法:蒙特卡罗仿真方法 MCM(Monte Carlo Method),模块化抽样方法 BS(Blocking Sampling Method)、几何抽样方法 GS(Geomtretic Sampling Method).为了比较三种仿真方法的有效性和计算全端可靠性的精确性,采用方差缩减(variance-reduction)方法进行仿真检验,并给出和分析了实验结果,结果表明每种方法有各自的优缺点和适用范围. All-terminal network reliability is the probability which is employed to describe the connection situation between all nodes of the whole network. How to compute network reliability reliably is an NP-hard problem. This thesis studies three simulation algorithm of network reliability, such as Monte Carlo Method, Blocking Sampling Method, and Geomtretic Sampling Method. In order to compare the effectiveness of the three methods and compute the accuracy of all-terminal network reliability, variance-reduction is used and the results of the experiment are given. Numerical examples demonstrate that each method has its advantages, disadvantages and scope of application.
出处 《湖北文理学院学报》 2013年第2期14-17,22,共5页 Journal of Hubei University of Arts and Science
关键词 计算机网络 全端可靠性 仿真方法 方差缩减 Computer networks All-terminal network reliability Simulation algorithm Variance-reduction
  • 相关文献

参考文献5

  • 1宋月,刘三阳,冯海林.节点失效下全端可靠性的上界[J].数学的实践与认识,2006,36(1):165-169. 被引量:3
  • 2KONAK A, SMITH A E. An Improved General Upper Bound for All-Terminal Network Reliability[[EB/OL]. (1998-10-01)[2012-10-11]. www.pitt edu / aesmith / postscript / bound.pdf.
  • 3ABDULLAH KONAK. A multiobjective genetic algorithm approach to telecommunication network design problems considering reliability and performance [D]. Pennsylvania(US): University of Pittsburgh , 2001.
  • 4CANCELA H, URQUHART M E. Adapting RVR simulation techniques for residual conneetedness network reliability models[J]. IEEE Transactions on Computers, 2002, 51(4): 439-443.
  • 5王芳,侯朝桢.一种估计网络可靠性的蒙特卡洛方法[J].计算机工程,2004,30(18):13-15. 被引量:6

二级参考文献11

  • 1Colbourn C J. The Combinatorics of Network Reliability[M]. Oxford University Press, 1987.
  • 2Bulka D, Dugan J B. Network s-t reliability bounds using a 2-dimensional reliability polynomial[J]. IEEE Transactions on Reliability, 1994, 43 (1).
  • 3Jan R H. Design of reliability networks, computers and operations research[J]. 1993, 20(1).
  • 4Konak A, Smith A E. An Improved General Upper Bound for All-Terminal Network Reliability, www. pitt. edu/-aesmith/postscript/bound. pdf.
  • 5Cancela H,Khadiri M E.A Recursive Variance-reduction Algorithm for Estimating Communication-network Reliability [J].IEEE Transaction on Reliability,1995,44:599-602
  • 6Bulteau S,Khadiri M E.A Monte Carlo Simulation of the Flow Network Reliability Using Importance and Stratified Sampling.Technical Report PI 1087,I.R.I.S.A.,1997
  • 7Cancela H,Khadiri M E.Series-parallel Reductions in Monte Carlo Network-reliability Evaluation.IEEE Transactions on Reliability,1998,47 (2):159-164
  • 8Cancela H,Urquhart M E.Adapting RVR Simulation Techniques for Residual Connectedness Network Reliability Models.IEEE Transactions on Computers,2002,51 (4):439-443
  • 9Stivaros C,Sutner K.Computing Optimal Assignments for Residual Network Reliability.Discrete Applied Mathematics,1997,75:285-295
  • 10陈国龙,张德运,王晓东.通信网络可靠性评估的一种算法[J].小型微型计算机系统,2000,21(12):1248-1251. 被引量:18

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部