摘要
For two kinds of the Moebius invariant subspace A_l^(a,2)(D) and A_l^(-a,2)(D) of L^(a,2)(D), we define big and small Hankel operators H_b^(ll') and h_b^(ll') for the analytic symbol function b(z), and study their boundedness, compactness and Schatten-von Neumanu classes S_p-estimates, and hence develope Schatten -von Neumann properties of these op- erators.
对于La,2(D)的两类Moebius不变子空间A_l^(a,2)(D)与A_l^(a,2)(D),定义了对解析的记号函数b(z)的大的和小的Hankel算子H_b^(ll')与h_b^(ll'),研究了它们的有界性、紧性及其Schatten-von Neumann类的S_p估计.性质。