延拓的Ricci流下一类热方程正解的梯度估计
摘要
当度量满足延拓的Ricci流时,该文研究紧致的n维黎曼流形上一类热方程的正解,利用最大值原理得到它的一个梯度估计,并应用梯度估计得到F泛函的单调性。
出处
《科技创新导报》
2013年第4期245-245,共1页
Science and Technology Innovation Herald
参考文献4
-
1Li P, Yau S T. On the parabolic kernel of the Schrodinaer operator [J]. Acta Math, 1986, 156: 153-201.
-
2CAO Xiao-dong, HAMILTON R. Differential Harnack estimates for time-dependent heat equations with potentials [J]. Geom Funct Anal, 2009, 19 (4) : 989-1000.
-
3方守文,叶斐.Khler-Ricci流下带有位能的热方程的微分Harnack不等式[J].数学学报(中文版),2010,53(3):597-606. 被引量:3
-
4方守文,朱鹏.Ricci流下具有位能的共轭热方程Harnack量的熵[J].扬州大学学报(自然科学版),2012,15(2):14-16. 被引量:3
二级参考文献19
-
1Li P., Yau S. T., On the parabolic kernel of the Schrodinger operator, Acta. Math., 1986, 156: 153-201.
-
2Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math. DC/0211159 v1 November 11, 2002.
-
3Cao X. D., Differential Harnack estimates for backward heat equations with potentials under the Ricci flow, J. Funct. Anal., 2008, 255(4): 1024-1038.
-
4Cao X. D., Hamilton R., Differential Harnack estimates for time-dependent heat equations with potentials, Geom. Funct. Anal., 2008, to appear.
-
5Cao H: D., Deformation of Kahler metrics to Kahler-Einstein metrics on compact Kahler manifolds, Invent. Math., 1985, 81: 359-372.
-
6Mok N., The uniformization theorem for compact Kahler manifolds of nonnegative holomorphic bisectional curvature, J. Diff. Geom., 1988, 27: 179-214.
-
7Cao H. D., On Harnack's inequalities for the Kahler-Ricci flow, Invent. Math., 1992, 109(2): 247-263.
-
8Cao H. D., Li N., Matrix Li-Yau-Hamilton estimates for the heat equation on Kahler manifolds, Math. Ann., 2005, 331(4): 795-807.
-
9Li N., A matrix Li-Yau-Hamilton estimate for Kahler-Ricci flow, J. Diff. Geom., 2007, 75(2): 303-358.
-
10HAMILTON R S. The Ricci flow on surfaces [J]. Contemp Math, 1988, 71: 237-261.
-
1黄广月,曾凡奇.Ricci流上一类非线性抛物方程的梯度估计[J].河南师范大学学报(自然科学版),2014,42(2):1-6.
-
2陈卿,严亚军.Gauss曲率具下界的Ricci流(英文)[J].中国科学技术大学学报,2011,41(5):377-383.
-
3黄红.关于奇数维流形上规范化的Ricci流的一个注记(英文)[J].数学研究,2010,43(2):131-134.
-
4马冰清,潘全香.List流上的log熵函数[J].河南科技学院学报(自然科学版),2012,40(6):44-47. 被引量:1