期刊文献+

延拓的Ricci流下一类热方程正解的梯度估计

下载PDF
导出
摘要 当度量满足延拓的Ricci流时,该文研究紧致的n维黎曼流形上一类热方程的正解,利用最大值原理得到它的一个梯度估计,并应用梯度估计得到F泛函的单调性。
作者 方守文
出处 《科技创新导报》 2013年第4期245-245,共1页 Science and Technology Innovation Herald
  • 相关文献

参考文献4

二级参考文献19

  • 1Li P., Yau S. T., On the parabolic kernel of the Schrodinger operator, Acta. Math., 1986, 156: 153-201.
  • 2Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math. DC/0211159 v1 November 11, 2002.
  • 3Cao X. D., Differential Harnack estimates for backward heat equations with potentials under the Ricci flow, J. Funct. Anal., 2008, 255(4): 1024-1038.
  • 4Cao X. D., Hamilton R., Differential Harnack estimates for time-dependent heat equations with potentials, Geom. Funct. Anal., 2008, to appear.
  • 5Cao H: D., Deformation of Kahler metrics to Kahler-Einstein metrics on compact Kahler manifolds, Invent. Math., 1985, 81: 359-372.
  • 6Mok N., The uniformization theorem for compact Kahler manifolds of nonnegative holomorphic bisectional curvature, J. Diff. Geom., 1988, 27: 179-214.
  • 7Cao H. D., On Harnack's inequalities for the Kahler-Ricci flow, Invent. Math., 1992, 109(2): 247-263.
  • 8Cao H. D., Li N., Matrix Li-Yau-Hamilton estimates for the heat equation on Kahler manifolds, Math. Ann., 2005, 331(4): 795-807.
  • 9Li N., A matrix Li-Yau-Hamilton estimate for Kahler-Ricci flow, J. Diff. Geom., 2007, 75(2): 303-358.
  • 10HAMILTON R S. The Ricci flow on surfaces [J]. Contemp Math, 1988, 71: 237-261.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部