期刊文献+

直接空冷凝汽器流动和传热的降维分析

Reduced Order Analysis on Flow and Heat Transfer in Direct Air-cooled Condenser
下载PDF
导出
摘要 由于传统的实验和数值研究的耗时性和资源有限性,目前无法将其用于火电机组空冷系统的实时运行控制。为了快速精确地预测空冷凝汽器单元(ACC)在环境风、轴流风机以及翅片管束的共同作用下的流动换热特性,将本征正交分解(POD)方法引入对环境风影响下的凝汽器单元内的速度场和温度场建立了低维模型。在风速研究范围(0.25m/s,10m/s)内均匀取了40个数值模拟结果的速度和温度场组成样本空间,得到速度场和温度场的低维模型。而后采用三次样条插值方法,得到非样本工况下的POD解。在保持速度场和温度场的相对误差分别在10-4.5和10-6的情况下,将CFD数值模拟105量级的自由度降至POD模型的101数量级。研究结果为实现火电空冷系统实时的运行控制提供了更有效的方法。 As the experimental and numerical measurements are time-consuming and their calculating resources are limit- ed, real-time control is not available for the air-cooled sys- tem operation using the method in thermal power unit. In order to rapidly and accurately predict the flow and heat transfer characteristics influenced by the ambient wind, axi- al fan and the finned tube bundles in air-cooled condenser (ACC), proper orthogonal decomposition (POD) procedure was introduced to construct the reduced order models (ROMs) for velocity and temperature fields in ACC affected by the ambient wind. 40 simulating velocity and temperature fields in ACC, which ambient wind magnitude increases with uniform step among the ranges from 0.25m/s to 10m/s, constitutes the sample space to obtain the ROMs.Then cubic spline interpolation is utilized to acquire the POD solutions during the out-sample cases. The mean relative er- ror orders of POD solutions for velocity and temperature fields keep at 10-4 and 10-6. At the same time, the de- gree of freedom (DOF) can be decreased from 10s in CFD models to 101 in POD models. The present investigations provide a more reliable approach for the real-time opera- tional control of ACC system in power plants.
出处 《现代电力》 北大核心 2013年第2期31-36,共6页 Modern Electric Power
基金 国家重点基础研究发展计划项目(973计划)(2009CB219804)
关键词 正交分解法 空冷凝汽器 流动换热 火电机组 CFD proper orthogonal decomposition air-cooledcondenser flow and heat transfer power generating units CFD
  • 相关文献

参考文献16

  • 1Philip Holmes, Lumley. John L. Berkooz Gal. Tur bulence, Coherent Structures. Dynamical Systems and Symmetry [M]. UK: Cambridge University Press, 1996:86 - 296.
  • 2Ma X, Karniadakis G E. A I.ow-Dimensional Model for Simulating Three-Dimensional Cylinder Flow. Journal of Fluid Mechanics, 2002, 458 (1) : 181 - 190.
  • 3Ma X, Karniadakis G E. Park H, et al. DPIV T- driven Convective Heat Transfer Simulation. Inter- national Journal of Heat and Mass Transfer, 2002, 45 (17):3517- 3527.
  • 4Shi Liuliu, Liu Yingzheng, Wan Jinjin. Influence of Wall Proximity on Characteristics of Wake Behind a Square Cylinder: PIV Measurements and POD Analysis, Thermal and Fluid Science, 2010, 34:28 -36.
  • 5Clarence T C. Rowley W, Murray Richard M. POD Based Models of Self-sustained Oscillations in The Flow Past An Open Cavity. AIAA Paper, 2000.
  • 6Ravindran S S. Control of Flow Separation Over A Forward-Facing Step by Model Reduction. Computer Methods is Applied Mechanics and Engineering, 2002, 191(41 - 42) : 4599 - 4617.
  • 7Gurka R, Liberzon A. Hetsroni G. POD of Vortici- ty Fields: A Method for Spatial Characterization of Coherent Structures. International Journal of Heat and Fluid Flow, 2006, 27(3): 416- 423.
  • 8Park H M, Lee W J. Boundary Optimal Control of Natural Convection by Means of Mode Reduction. Journal of Dynamic Systems, Measurement, and Control, 2002, 124 (1) : 47-54.
  • 9Rambo J, Joshi Y. Reduced-Order Modeling of Steady Turbulent Flows Using The POD. ASME Summer Heat Transfer Conference, 2005:1 - 10.
  • 10Rambo J, Joshi Y. Reduced-Order Modeling of Tur- bulent Forced Convection with Parametric Condi- tions. International Journal of Heat and Mass Trans- fer, 2007, 50(3 - 4) : 539 - 551.

二级参考文献34

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部