期刊文献+

在煤矿循环流化床锅炉仿真中RBF神经网络的应用

RBF Neural Network Application in the Coal Mines of Circulating Fluidized Bed Boiler Simulation
下载PDF
导出
摘要 为了解决煤矿循环流化床锅炉燃烧实时动态数学模型的高阶、多变量微分方程不易求解等问题,提出利用RBF神经网络实现该模型的参数辨识,并提出利用小生境克隆选择算法提高RBF网络学习算法的收敛性。通过SNCC循环流化床仿真系统的数字仿真验证,算法具有良好的收敛性和逼近效果,并避免了传统模型的复杂微分方程求解过程。 In order to solve the problem of difficultly solved high-level, multi-variable differential equation for mine circulating fluidized bed boiler real-time dynamic model, RBF neural network is used to identify the model pa- rameter, and maken use of clonally selection algorithm to improve the RBF network learning convergence. Digital simulation results by SNCC CFB simulation system show that the proposed algorithm has good convergence and approximation results, and to avoid the complex process of solving differential equations of the traditional model.
作者 严方
出处 《科学技术与工程》 北大核心 2013年第9期2363-2366,共4页 Science Technology and Engineering
基金 新世纪广西高等教育教学改革工程立项项目(2010JGZ082) 广西高等学校特色专业及课程一体化建设项目(GXTSZY123) 中央财政支持高等职业学校专业建设发展项目资助
关键词 RBF神经网络 循环流化床 锅炉建模 RBF neural network circulating fluidized bed boiler model
  • 相关文献

参考文献4

二级参考文献19

  • 1J S Chung, H K Jung, S Y Hahn. A Study on Comparison of Optimization Performances between immune Algorithm and other Algorithms[J]. IEEE Transactions on magnetics, 1998,34(5).
  • 2L J Jiao, L Wang. A Novel Genetic algorithm Based on Immunity[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2000, 30(5).
  • 3L N de Castro. Learning and Optimization Using the Clonal Selection Principle[J].IEEE Transaction on Evolutionary Computation, Special Issue on Artificial Immune Systems, 2001.
  • 4X Q Zuo, S Y Li. The Chaos Artificial Immune Algorithm and Its Application to RBF Neuro-Fuzzy Controller Design[C]. Systems, Man and Cybernetics, 2003. IEEE International Conference on, Oct.5-8 2003,3: 2809-2814.
  • 5周兆英 译.计算机控制系统-原理与设计(第三版)[M].电子工业出版社,2001..
  • 6Gao Jianqiang, Qi Zaishan, Ma Liangyu, et al. Modular simulation model for combustion system of circulating fluidized bed boiler[J].Journal of North China Electric Power University, 2002, 29(1): 73-77.
  • 7岑可法.循环流化床锅炉理论、设计与运行[M].北京:中国电力出版社,1999.
  • 8王亚斌.基于BP神经网络PID控制及其仿真[J].江苏冶金,2008,36(2):33-35. 被引量:11
  • 9汤同奎,邵惠鹤.神经网络在控制中的应用[J].江苏石油化工学院学报,1998,10(1):45-49. 被引量:8
  • 10王新亚.基于MEA—BP神经网络的主汽温控制系统的研究[J].山西焦煤科技,2009(3):13-15. 被引量:6

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部