摘要
为了解决煤矿循环流化床锅炉燃烧实时动态数学模型的高阶、多变量微分方程不易求解等问题,提出利用RBF神经网络实现该模型的参数辨识,并提出利用小生境克隆选择算法提高RBF网络学习算法的收敛性。通过SNCC循环流化床仿真系统的数字仿真验证,算法具有良好的收敛性和逼近效果,并避免了传统模型的复杂微分方程求解过程。
In order to solve the problem of difficultly solved high-level, multi-variable differential equation for mine circulating fluidized bed boiler real-time dynamic model, RBF neural network is used to identify the model pa- rameter, and maken use of clonally selection algorithm to improve the RBF network learning convergence. Digital simulation results by SNCC CFB simulation system show that the proposed algorithm has good convergence and approximation results, and to avoid the complex process of solving differential equations of the traditional model.
出处
《科学技术与工程》
北大核心
2013年第9期2363-2366,共4页
Science Technology and Engineering
基金
新世纪广西高等教育教学改革工程立项项目(2010JGZ082)
广西高等学校特色专业及课程一体化建设项目(GXTSZY123)
中央财政支持高等职业学校专业建设发展项目资助
关键词
RBF神经网络
循环流化床
锅炉建模
RBF neural network circulating fluidized bed boiler model