期刊文献+

用于人脸识别的半监督优化局部保持投影 被引量:1

Semi-supervised Optimal Locality Preserving Projection for Face Recognition
下载PDF
导出
摘要 未充分利用大量未标注样本的非监督信息是监督的、优化的局部保持投影(简称SOLPP)在人脸识别应用中的主要问题。为此提出一种用于人脸识别的半监督的优化的局部保持投影(SSOLPP)。该算法在SOLPP的基础上,通过加权平衡参数融合了未监督的主成分析(PCA)降维算法,使得投影后的数据保持了高维数据中的未标注样本的、全局的散布结构信息和监督的优化局部结构信息。在YaleB和AR人脸数据集上的实验验证了所提算法的有效性。 To ignore non-supervised information of unlabeled samples is the main problem of recently proposed Supervised Optimal Locality Preserving Projection (SOLPP) in applications of face recognition. Aiming to the prob- lem, a Semi-supervised Optimal Locality Preserving Projection (SSOLPP) for face recognition is proposed. On the base of SOLPP, the algorithm introduces Principal Component Analysis (PCA) with the weighted trade-off parame- ter way, making projected data preserve global scatter structure information and supervised optimal local structure information of high-dimensional data. Experimental results on Yale and YaleB demonstrate the effectiveness of our proposed algorithm.
作者 杨晓梅
出处 《科学技术与工程》 北大核心 2013年第9期2398-2402,共5页 Science Technology and Engineering
基金 国家自然科学基金项目(61163066)资助
关键词 人脸识别 半监督降维 局部保持 主要成分分析 信息融合 face recognition semi-supervised dimensionality reduction locality preserving projection principal component analysis information fusion
  • 相关文献

参考文献8

  • 1He X, Yah S, Hu Y, et al, Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine intelligence, 2005,27 ( 3 ) :328-340.
  • 2Cai D, He X, Hart J, et al. Orthoganal Laplacianfaces for face recog- nition. IEEE Transactions on Image Processing, 2006; 15 ( 11 ) : 3608-3614.
  • 3Zhao H, Sun S, Jing Z. Local-information-based uncorrelated fea- tureextraction. Optical Engineering, 2006 ; 45:5020-505.
  • 4Chen Y, Xu X H, Lai J H. Yuen, Optimal locality preserving pro- jection for face recognition. Neuro Computing, 2011 ; 74 1 ( 8 ) : 3941 -394.
  • 5Wong W K, Zhao H T. Supervised optimal locality preserving projec- tion. Pattern Recognition, 2012 ; 45 ( 1 ) : 186-197.
  • 6Song Y Q, Nei F P, Zhang C G, et al. A unified framework for semi- supervised dimensionality reduction. Pattern Recognition, 2008 ; 41 ( 9 ) : 2789-2799.
  • 7Song Y Q, Nei F P, Zhang C G. Semi-supervised sub-manifold dis- criminant analysis. Pattern Recognition Letters, 2008 ; 29 ( 13 ) : 1806-1813.
  • 8Sugiyama M, Id T, Nakajima S, et al. Semi-supervised local fisher discriminant analysis for dimensionality reduction. Machine Learning, 2008; 78(1), 35-61.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部