期刊文献+

具有切换拓扑的动态复杂网络的同步控制 被引量:3

Synchronization Control for Complex Dynamical Networks with Switching Topology
下载PDF
导出
摘要 针对一类耦合拓扑集合给定的动态复杂网络模型,研究在网络通过给定耦合拓扑集合中的任一拓扑进行耦合均不能实现同步时,如何通过在给定耦合拓扑集合中拓扑之间的切换来实现网络的同步。通过构建合适的Lyapunov函数给出了网络实现同步所需要满足的条件和相应的耦合拓扑切换规则。与已有的研究结果相比,本文所研究的动态复杂网络的耦合拓扑矩阵具有更为一般的形式,而且无需满足已有研究成果对耦合拓扑矩阵的限制条件(诸如可同时上三角化以及可同时对角化等条件)。数值仿真结果验证了所给结果的有效性和正确性。 For complex dynamical networks with a pre-given collection of coupled connection topologies, how to achieve synchronization by designing the topological switching law when synchronization cannot be achieved by using any topology alone in this collection is investigated. By constructing an appropriate Lyapunov function, the synchroni- zation criteria for the general connection topology is established and the switching law design is given. Compared with the existing results, the coupled topological matrices can be in more general forms without the restrictions on coupled topological matrices (such as simultaneous triangularizability or diagonalizability). The simulation results indicate the effectiveness of the proposed results.
出处 《科学技术与工程》 北大核心 2013年第10期2720-2725,共6页 Science Technology and Engineering
基金 国家自然科学基金(60974002 60934006) 上海市自然科学基金(09ZR1414200)资助
关键词 动态复杂网络 同步 切换系统 complex dynamical network synchronization switched system
  • 相关文献

参考文献9

  • 1Boccaletti S, Latora V, Moreno Yet al. Complex networks : structure and dynamics. Physics Reports, 2006; 424(4) : 175-308.
  • 2Chai Wah-wu, Leon O C. Synchronization in an array of linearly cou- pled dynamical systems. IEEE Transactions on Circuits And Systems I : Fundamental Theory and application, 1995 ; 42 (8) : 430-447.
  • 3Wang Xiao-fan, Chen Guan-rong. Synchronization in scale-free dynam- ical networks: robustness and fragility. IEEE Transactions on Circuits And Systems I : Fundamental Theory and application, 2002 ; 49 ( 1 ) : 54-62.
  • 4Lu Jin-hu, Chen Guan-rong, A time-varying complex dynamical net- work model and its controlled synchronization criteria. IEEE Transac- tions on Automatic Control, 2005; 50(6) : 841-846.
  • 5Yu Wen-wu, Cao Jin-De, Lu Jin-hu. Global Synchronization of Linear- ly Hybrid Coupled Networks with Time-Varying Delay. SIAM J. Ap- plied Dynamical Systems, 2008 ; 7 ( 1 ) : 108-133.
  • 6Chen Tian-ping, Liu Xi-wei, Lu Wen-lian. Pinning complex networks by a single controller. IEEE Transactions on Circuits And Systems I: Regular Papers, 2007; 54(6) : 1317-1326.
  • 7Yao Jing, David J H, Guan Zhi-rong et al. Synchronization of complex dynamical networks with switching topology via adaptive control. IEEE conference on decision and control, 2006:2820-2824.
  • 8Liu Tao, Zhao Jun, David J H. Exponential synchronization of complex delayed dynamical networks with switching topology. IEEE Transac- tions on Circuits And Systems I: Regular Papers, 2010; 57 (11): 2967-2980.
  • 9Zhao Jun, Liu Tao, David J H. Synchronization of complex dynamical networks with switching topology: a switched system point of view. Au- tomatica, 2009 ;4 ( 11 ) : 2502-2511.

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部