期刊文献+

基于自适应笛卡尔网格的翼型绕流数值模拟

Numerical Simulation of Flows around Airfoil Based on Adaptively-refined Cartesian-mesh Approaches
下载PDF
导出
摘要 基于自适应笛卡尔网格方法求解Euler方程,结合浸入式边界方法解决小切割网格单元的时间步长限制问题,对NACA0012翼型的两种流动状况进行了数值模拟;并与AGARD的理论解和结构网格解进行了对比。结果表明:自适应笛卡尔网格方法在较少的网格量上得出的计算结果与AGARD结果吻合的很好,能够有效模拟二维翼型绕流问题,表明该网格方法具有进一步扩大应用范围的前景。 Adaptively-refined Cartesian-mesh approaches for the computation of Euler equations were intro- duced, immersed boundary method was employed to relieve the time step restriction of small cut cell, and two flows around NACA0012 airfoil were simulated and compared with theoretical and structured mesh results provided by AGARD. The results achieves from AGARD and flows around 2D airfoil less number of mesh cells show good agreement with the published data by are efficiently simulated, which show prospective applications in much more fields.
出处 《科学技术与工程》 北大核心 2013年第10期2891-2895,共5页 Science Technology and Engineering
关键词 自适应 笛卡尔网格 翼型 数值模拟 adaptively-refined Cartesian-mesh airfoil numerical simulation
  • 相关文献

参考文献10

  • 1Thompson J F, Weatherill N P. Aspects of numerical grid generation : current and art. AIAA-93-3539, 1993.
  • 2Giuseppe B, Aldo F. Variational analysis and aerospace engineering. New York : Springer, 2009.
  • 3Darren L D Z. A quadtree-based adaptively-refined Cartesian-grid al- gorithm for solution of the Euler equations. Michigan: University of Michigan, 1993.
  • 4Willian J C. An adaptively-refined, cartesian, cell-based scheme for the Euler and Navier-Stokes Equations. Michigan: University of Michigan, 1994.
  • 5栗可,吴子牛.可压缩流计算的九分笛卡尔网格技术[J].计算物理,2003,20(6):498-502. 被引量:1
  • 6Tomasz P, Timur J L, Vincent G W. Adaptive mesh refinement-theo- ry and applications. New York: Springer, 2005.
  • 7Dadone A, Grossman B. Ghost-cell method for inviscid two-dimen- sional flows on cartesian grids. AIAA Journal, 2004; 42( 12)2499- 2507.
  • 8Lock R C. Test cases for numerical methods in two-dimensional tran- sonic flows. Advisory Group for Aerospace Research and Development(AGARD)-R-575 , 1970.
  • 9Yoshihara H, Sachet P. Test cases for invisid flow field methods. Advisory Group for Aerospace Research and Development (AGARD) -AR-211, 1985.
  • 10Liou M S. A sequel to AUSM, Part ]] : AUSM -up for all speeds. Journal of Computational Physics, 2006 ; 214 ( 1 ) : 137-170.

二级参考文献6

  • 1[1]Quirk J. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies [J]. Computers Fluids, 1994,125- 142.
  • 2[2]Berger M J, LeVeque R. An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries [ R ].AIAA Paper-89-1930,1989.
  • 3[3]Wu Z N. A genuinely second-order accurate method for viscous flow computations around complex geometries [A]. In the 15th Conf Numer Meth F1 Dyn, Monterey, USA, June 24-28,1996.
  • 4[4]Wu Z N. Anisotropic Cartesian grid approach for viscous flow computations, CFD Review [ C ]. World Scientific,1998,93 - 113.
  • 5[5]De Zeeuw D, Powell K G. An adaptively refined Cartesian mesh solver for the Euler equations [ J ]. J Comput Phys,1993,56 - 68.
  • 6[6]Toro E F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction [ M ]. New York: Springer,1999, 201-218.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部