期刊文献+

电驱动微纳米模塑技术的成形机理及工艺参数影响研究 被引量:2

Research on the Forming Mechanisms and Critical Process Parameters in Two Typical Electric Field Driven Micro-/nano-molding Methods
下载PDF
导出
摘要 电驱动微纳米模塑技术较之常规压印光刻技术具有其独特的优势,其利用电场产生的Maxwell压强替代外部机械压力,实现对聚合物薄膜流变的有效驱动,可以避免压印光刻技术中机械压力引发的结构变形等问题,实现微纳米结构的保真复形。针对电驱动微纳米模塑技术中电场施加方式以及模具几何约束的差异,提出非接触式与接触式两种电驱动模塑成形方法,并采用理论分析、数值仿真以及试验等手段探究电场作用下聚合物的流变成形机理,分析电压、空气间隙和膜厚等工艺参数对复形模塑结构的影响,探讨非接触式与接触式两种电驱动微纳米结构成形方法的异同。研究结果表明,两种电驱动模塑技术都能有效避免常规压印光刻技术的不足之处,在无机械压力条件下实现微纳米结构的模板图案完整复型,但接触式电驱动微纳米模塑方式在图形复制精确性、成形效率和工艺可控性等方面更具优势,是一种具有广阔应用潜力的纳米结构图形化方法。 Electric field driven micro-/nano-molding utilizes Maxwell tensor rather than mechanical pressure to drive the polymer to flow and to realize the pattern transferring, which can avoid the loading force induced distortion in conventional imprint lithography and form uniform mi Two kinds of electric field driven micro-/nano-molding methods, contact case and non-contact case, divided according to the differences on the implement of the electric field and the constraint of the geometric template are proposed and researched. Based on the theoretical analysis, numerical simulation and experimental approach, forming mechanisms and critical process parameters of the electric field driven micro-/nano-molding methods are discussed, and the comparisons between the contact case and the non-contact one is performed. Research results indicate that two kind of electric field driven micro-/nano-molding methods can both avoid the disadvantages of the conventional imprint lithography and form micro-/nano-smactures identified with template without any mechanical pressure, however, the contact electric field driven micro-/nano-molding method is a better micro-/nano-fabrieation method from the viewpoint of the accuracy, efficiency and controllability.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第6期145-152,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金重大研究计划(90923040) 国家重点基础研究发展计划(973计划 2009CB724202)资助项目
关键词 微纳制造 图形转移 纳米压印 电驱动微纳结构模塑 麦克斯韦应力 Micro and nano-fabrication Pattern transferring Nanoimprint lithographyElectric field driven micro and nano-molding Maxwell tensor
  • 相关文献

参考文献23

  • 1JUNG Y C, BHUSHAN B. Contact angle, adhesion and friction properties of micro- and nanopattcrncd polymers for superhydrophobicity[J]. Nanotcchnology, 2006, 17(19): 4970-4980.
  • 2SIDORENKO A, KRUPENKIN T, AIZENBERG J. Controlled switching of the wetting behavior of biomimetic surfaces with hydrogel-supported nanostructures [J]. Journal of Materials Chemistry, 2008, 18(32): 3841-3846.
  • 3FU X X, KANG X N, ZHANG B, et al. Light transmission from the large-area highly ordered epoxy conical pillar arrays and application to GaN-based light emitting diodes[J]. Journal of Materials Chemistry, 2011, 21(26): 9576-9581.
  • 4DISCHER D E, JANMEY P, WANG Y L. Tissue ceils feel and respond to the stiffness of their substrate[J]. Science, 2005, 310(5751): 1139-1143.
  • 5MCALPINE M C, AHMAD H, WANG D W, et al. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors[J]. Nature Materials, 2007, 6(5): 379-384.
  • 6NABER A, KOCK H, FUCHS H. High-resolution lithography with near-field optical microscopy[J]. Scanning, 1996, 18(8): 567-571.
  • 7丁玉成,刘红忠,卢秉恒,李涤尘.下一代光刻技术——压印光刻[J].机械工程学报,2007,43(3):1-7. 被引量:13
  • 8SCHAFFER E, THURN-ALBRECHT T, RUSSELL T P, et al. Electrically induced structure formation and pattern transfer[J]. Nature, 2000, 403(6772): 874-877.
  • 9LIANG X, ZHANG W, LI M, et al. Electrostatic force-assisted nanoimprint lithography (EFAN)[J]. Nano Letters, 2005, 5(3): 527-530.
  • 10LI X M, SHAO J Y, TIAN H M, et al. Fabrication of high-aspect-ratio microstructures using dielectrophoresis- electrocapillary force-driven UV-imprinting[J]. Journal of Micromechanics and Microengineering, 2011, 21- 0650106.

二级参考文献51

  • 1林忠华,胡国清,刘文艳,张慧杰.微机电系统的发展及其应用[J].纳米技术与精密工程,2004,2(2):117-123. 被引量:27
  • 2丁玉成,刘红忠,卢秉恒,李涤尘.下一代光刻技术——压印光刻[J].机械工程学报,2007,43(3):1-7. 被引量:13
  • 3王一平.工程电动力学[M].西安:西安电子科技大学出版社,2007.
  • 4CHOU S Y, KRAUSS P R, RENSTROM P J. Nanoimprint lithography[J]. Journal of Vacuum Science andTechnologyB, 1996, 14(6): 4 129-4 133.
  • 5HIRAI Y, KONISHI T, YOSHIKAWA T, et al. Simulation and experimental study of polymer deformation in nanoimprint lithography[J]. Journal of Vacuum Science and Technology B, 2004, 22(6): 3 288- 3 293.
  • 6YONG W B. Analysis of the nanoimprint lithography with a viscous model[J]. Microelectronic Engineering, 2005, 77.. 405-411.
  • 7ROWLAND H D, SUN A C, SCHUNK P R, et al. Impact of polymer films thickness and cavity size on polymer flow during embossing: Toward proces design rules for nanoimprint lithography[J]. Journal of Micromechanics and Microengineering, 2005, 15:2 414-2 425.
  • 8HEYDERMAN L J, SCHIFT H, DAVID C, et al. Flow behaviour of thin polymer films used for hot embossing lithography[J]. Microelectronic Engineering, 2000, 54: 229-245.
  • 9MACINTYRE D S, THOMS S. A study of resist flow during nanoimprint lithography[J]. Microelectronic Engineering, 2005, 78-79: 670-675.
  • 10SHIN S, LEE W I. Finite element analysis of incompressible viscous flow with moving free surface by selective volume of fluid method[J]. International Journal of Heat and Fluid Flow, 2000, 21: 197-206.

共引文献33

同被引文献20

  • 1来五星,轩建平,史铁林,杨叔子.微制造光刻工艺中光刻胶性能的比较[J].半导体技术,2004,29(11):22-25. 被引量:9
  • 2张晔,陈迪,张金娅,倪智萍,朱军,刘景全.SU-8胶光刻工艺参数优化研究[J].微细加工技术,2005(3):36-41. 被引量:7
  • 3李战华,吴健康,胡国庆,等.微流控芯片中的流体流动.北京:科学出版社,2012.190-192.
  • 4Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution. Science, 1996, 272:85-87.
  • 5Hua F, Sun Y, Gaur A, et al. Polymer imprint lithography with molecular-scale resolution. Nano Letter, 2004, 4:2467-2471.
  • 6Lan H, Ding Y, Liu H. Nanoimprint Lithography: Principles, Processes and Materials. New York: Nova Science Publishers, 2011.
  • 7Suh K Y, Lee H H. Capillary force lithography: Large-area patterning, self-organization and an isotopic dewetting. Adv Funct Mater, 2002, 12:405-413.
  • 8Li X, Shao J, Tian H, et al. Fabrication of high-aspect-ration microstructures using dielectrophoresis-electrocapillary force-driven UV imprinting. J Micromech Microeng, 2001, 21:065010.
  • 9Ramos A. Electrokinetics and Electrohydrodynamics in Microsystems. New York: Springer, 2011.
  • 10Kamiadakis G E, Beskok A. Micro Flows: Fundamentals and Simulation. Berlin, Germany: Springer, 2002.40-62.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部