期刊文献+

Similarity representation of pattern-information fMRI 被引量:1

Similarity representation of pattern-information fMRI
原文传递
导出
摘要 Representational similarity analysis (RSA) is a rapidly developing multivariate platform to investigate the structure of neural activities. Similarity/dissimilarity is the core concept of RSA, realized by the construction of a representational dissimilarity matrix, that addresses the closeness/distance for each pair of research elements (e.g., one minus the correlation between the brain responses to 2 different stimuli) and in turn, constitutes a multivariate pattern as its analytic foundation. This approach is also welcome for its sensitivity in detecting subtle differences of distributed experimental effects in the brain. Importantly, RSA is not only an experimental tool but a promising data-analytical framework that can integrate cross-modal imaging signals, explore brain-behavior link, and verify computational models according to measured neural activities. RSA substantiates its integrative power by relating similarity structure in one domain (e.g., stimulus features) to that in another domain (e.g., neural activities). This review summarizes dissimilarity/similarity definition of RSA, introduces how to derive the dissimilarity structure in neural response pattern, and carry out connectivity analysis based on RSA platform. Several recent advances are highlighted, such as the extraction of across-subjects regularity, cross-validation of brain reactivity in human beings and monkeys, the incorporation of computational models and behavioral profiles into RSA. Voxel receptor field modeling, another promising multivariate tool of pattern elucidation, is presented and compared. The application of RSA is expected to surge and extend in many fields of neuro-science, computation, psychology and medicine. We also discuss the limitations of RSA and some critical questions that need to be addressed in future research. Representational similarity analysis (RSA) is a rapidly developing multivariate platform to investigate the structure of neural ac- tivities. Similarity/dissimilarity is the core concept of RSA, realized by the construction of a representational dissimilarity matrix, that addresses the closeness/distance for each pair of research elements (e.g., one minus the correlation between the brain re- sponses to 2 different stimuli) and in turn, constitutes a multivariate pattem as its analytic foundation. This approach is also wel- come for its sensitivity in detecting subtle differences of distributed experimental effects in the brain. Importantly, RSA is not only an experimental tool but a promising data-analytical framework that can integrate cross-modal imaging signals, explore brain-behavior link, and verify computational models according to measured neural activities. RSA substantiates its integrative power by relating similarity structure in one domain (e.g., stimulus features) to that in another domain (e.g., neural activities). This review summarizes dissimilarity/similarity definition of RSA, introduces how to derive the dissimilarity structure in neural response pattern, and carry out connectivity analysis based on RSA platform. Several recent advances are highlighted, such as the extraction of across-subjects regularity, cross-validation of brain reactivity in human beings and monkeys, the incorporation of computational models and behavioral profiles into RSA. Voxel receptor field modeling, another promising multivariate tool of pattern elucidation, is presented and compared. The application of RSA is expected to surge and extend in many fields of neuro- science, computation, psychology and medicine. We also discuss the limitations of RSA and some critical questions that need to be addressed in future research.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2013年第11期1236-1242,共7页
基金 supported by the National Natural Science Foundation of China (31070905) National Social Science Foundation of China (11AZD119)
关键词 相似性分析 FMRI 模式信息 神经活动 计算模型 权力结构 反应模式 RSA representational similarity analysis, pattern information, condition-rich experiments, decode
  • 相关文献

参考文献4

二级参考文献231

  • 1Cammoun L, Gigandet X, Sporns O, et al. Connectome alterations in schizophrenia. Neurolmage, 2009, 47:S157.
  • 2Vaessen M J, Jansen J F, Hofman P A, et al. Impaired small-world structural brain networks in chronic epilepsy. Neurolmage, 2009, 47: S113.
  • 3Friston K J, Frith C D, Liddle P F, et al. Functional connectivity: The principal component analysis of large (PET) data sets. J Cereb Blood Flow Metab, 1993, 13:5-14.
  • 4Stam C J. From synchronization to networks: Assessment of functional connectivity in the brain. In: Perez Velazquez J L, Richard W, eds. Coordinated Activity in the Brain, vol 2. Berlin Heidelberg: Springer-Verlag, 2009.91-115.
  • 5Stephan, Hilgetag K E, Burns C C, et al. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci, 2000, 355:111-126.
  • 6Micheloyannis S, Pachou S, Stam C J, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett, 2006, 402:273-277.
  • 7Micheloyannis S, Vourkas S, Tsirka M, et al. The influence of ageing on complex brain networks: A graph theoretical analysis. Hum Brain Mapp, 2009, 30:200-208.
  • 8Ferri R, Rundo F, Bruni O, et al. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol, 2007, 118:449-456.
  • 9Dimitriadis S I, Laskaris N A, Del Rio-Portilla Y, et al. Characterizing dynamic functional connectivity across sleep stages from EEG. Brain Topogr, 2009, 22:119-133.
  • 10Stam C J. Functional connectivity patterns of human magnetoencephalographic recordings: A 'small-world' network? Neurosci Lett, 2004, 355:25-28.

共引文献159

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部