期刊文献+

一类具扩散和时滞Belousov-Zhabotinskii系统的行波解

The Traveling Solutions to a Belousov-Zhabotinskii System with Delay and Diffusion
原文传递
导出
摘要 研究一般的带时滞的反应扩散方程组的行波解,这儿反应项具混拟单调性质,我们定义了相应的行波解的耦合上下解,以耦合上下解为初始迭代函数构造了耦合迭代序列,并且证明了在一定的单调性条件下该耦合序列收敛于行波解.以一个具体的带时滞的Belousov-Zhabotinskii模型为例,建立了有序的拟上解和拟下解并且得到行波解的存在性. This paper deals with the traveling solutions of the general delayed reaction difl'usion system, where the reaction function possesses a mixed quasimonotone property. The definition of the coupled upper and lower solutions of the corresponding traveling wave equation were given. By the technique of coupled iteration where the initial data is a pair of coupled upper and lower solutions, the monotonicity property is ensured such that the sequence converges to the traveling wave solution. The main result is illustrated by and applied to a delayed Belousov- Zhabotinskii model with delay for which the required pair of ordered quasi-upper and quasi-lower solutions are constructed and then the existence of a traveling wavefront is obtained.
作者 刘江
出处 《生物数学学报》 2013年第1期130-142,共13页 Journal of Biomathematics
基金 国家自然科学基金资助项目(10671172)
关键词 反应扩散方程组 行波解 存在性 上下解 Reaction-diffusion systems Traveling wave solution Existence Upper andlower solutions
  • 相关文献

参考文献17

  • 1Boumenir A, Nguyen V M. Perron theorem in the monotone iteration method for traveling waves in delayedreaction-diffusion equations[J]. J. Differential Equations, 2008, 244(7):1551-1570.
  • 2Conley C, Gardner R, An application of the generalized Morse index to traveling wave solutions of a com-petitive reaction-diffusion model[J]. Indiana Univ. Math. J, 1984, (3):319-343.
  • 3Dunbar S R. Traveling wave solutions of diffusive Lotka-Volterra equations [J]. J. Math. Biol, 1983, 17(1):11-32.
  • 4Dunbar S R. Traveling wave solutions of diffusive Lotka-Volterra equations: A hetero-clinic connection inR4 [J]. Trans. Amer. Math. Soc, 1984, 286(2):557-594.
  • 5Gardner R. Existence of traveling wave solutions of predator-prey systems via the connection index[J]. SIAMJ. Appl. Math, 1984, (1):56-79.
  • 6Gardner R. Existence and stability of traveling wave solutions of competition models: A degree theoretic:approach [J]. J. Differential Equations, 1982, (3):343-364.
  • 7霍罡,靳祯,张芬芬.一类S-I传染病模型行波解的存在性[J].生物数学学报,2008,23(4):661-667. 被引量:5
  • 8Kanel Ya. I. Existence of a travelling wave solution of the Belousov-Zhabotinskii system[J]. Diifer. Uravn,1990, 26(4):652-666.
  • 9Ya A. Kapel. Existence of travelling-wave type solutions for the Belousov-Zhabotinskii system equations[J].Sibirsk. Math. Zh, 1991, 32(3):47-59.
  • 10Lin Z G, Pedersen M, Tian C R. Traveling wave solutions for reaction diffusion systemsfJ]. Nonlinear Anal.2010,73(10):3303-3313.

二级参考文献20

  • 1丁玮,韩茂安.具时滞的人口模型的行波解(英文)[J].生物数学学报,2005,20(1):11-16. 被引量:11
  • 2Huang Jianhua,Huang Lihong.TRAVELLING WAVEFRONTS IN DELAYED COOPERATIVE AND DIFFUSIVE SYSTEMS WITH NON-LOCAL EFFECTS[J].Applied Mathematics(A Journal of Chinese Universities),2005,20(3):363-375. 被引量:1
  • 3Ye Q X,Li Z Y. Introduction to Reaction-Diffusion Equations[M]. Beijing: science press, 1990.
  • 4王明新.抛物型方程的初边值间题[M].北京;科学出版社,1993.
  • 5Murray J D. Mathematical Biology H Spatial Models and Biomedical Applications[M]. Berlin:Springer-Verlag, 1990.
  • 6Dunbar S.Traveling wave solutions of diffusive Lotka-Volterra equations[J].Journal of Mathematical Biology, 1983, 17: 11-32.
  • 7Dunbar S. Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in R4[J]. Transactions of the American Mathematical Society, 1984, 286: 557-594.
  • 8Dunbar S.Traveling waves in diffusive predator-prey equations: periodic orbits and point-to periodic hete- roclinic orbits[J].SIAM Journal on Applied Mathematics, 1986, 46: 1057-1078.
  • 9Volpert A. Traveling Wave Solutions of Parabolic Systems[M]. New York: American Mathematical Society, 1994.
  • 10Owen, M R, Lewis, M A. How predation can slow, stop or reverse a prey invasion[J].Bulletin of Mathematical Biology , 2001, 63: 655-684.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部