期刊文献+

一类非线性分数阶奇异耦合系统正解的存在性 被引量:6

Positive Solutions for a Class of Coupled Singular System of Nonlinear Fractional Differential Equations
原文传递
导出
摘要 讨论了一类非线性分数阶奇异耦合系统正解的存在性和唯一性,通过分数阶格林函数及其性质将微分系统转化为等价的积分系统,应用偏序上的不动点定理得到系统正解的存在性和唯一性. In this work we discuss a boundary value problem for a coupled singular system of nonlinear fractional differential equations.The differential operator is taken in the standard Riemann-Liouville sense.By using Green'function and its corresponding properties, we transform the derivative systems into equivalent integral systems. The existence and uniqueness of positive solution is based on a fixed theorem in partially ordered sets.
出处 《生物数学学报》 2013年第1期143-148,共6页 Journal of Biomathematics
基金 国家自然科学基金(No.11271235) 山西省自然科学基金(No.2008011002-1) 山西大同大学科研项目(2010-B-01 2009-Y-15) 山西省高校科技研发项目(20111117 20111020)
关键词 分数阶 奇异 耦合系统 不动点定理 Fractional order Singular Coupled system Fixed point theorem
  • 相关文献

参考文献11

  • 1Kilbas A A, Srivastava H M, Trujillo J ,J. Theory and Applications of Fractional Differential Equa.tions[M],Elsevier B. V., Amsterdam, 2006.
  • 2Podlubny I. Fractional Differential Equations, in: Mathematics in Science and EngineeHng[M], 1999, 198,Academic Press, New York, London, Toronto.
  • 3Samko S G, Kilbas A A, Marichev O I. Fractional Integral And Derivatives(Theory and Applications)[M].Switzerland: Gordon and Breach, 1993.
  • 4Bai C Z, Fang J X. The existence of a positive solution for a singular couplcd system of a nonlinear fractionaldifferential equation[J]. Applied Mathematics and Computation, 2004, 35(3):611-621.
  • 5Su X. Boundary value problem for a coupled system of nonlinear fractional differential equditions[J].AppliedMathematics Letters, 2009,35(22): 64-69.
  • 6Bai Z B, LV H S. Positive solutions for boundary value problem of nonlinear fractional differential equation [J].Jom'nal of Mathematical Analysis and Application, 2005, 35(311):495-505.
  • 7Liang S, Zhang J. Positive solutions for boundary problems of nonlinear fractional differential equation[J].Nonlinear Analysis, 2009, 35(71):5545-5550.
  • 8Amini-Harandi A, Emani H. A fixed point theorem for contraction type maps in partially ordered metricspaces and application to ordinary differential cquations[J]. Nonlinear Analysis, 2010, 35(72):2238--2242.
  • 9郭建敏,郭彩霞,李华鹏.带有参数的四阶Neumann边值问题解的存在性和多解性(英文)[J].生物数学学报,2011,26(1):34-42. 被引量:6
  • 10司家芳,蒋威.一类分数阶微分方程的最优控制(英文)[J].生物数学学报,2011,26(1):17-24. 被引量:5

共引文献10

同被引文献27

  • 1钟文勇.分数阶微分方程多点边值问题的正解[J].吉首大学学报(自然科学版),2010,31(1):9-12. 被引量:9
  • 2张素平,蒋威.一类高维脉冲泛函微分方程周期解的存在性(英文)[J].生物数学学报,2014(1):17-22. 被引量:2
  • 3KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and application of fractional differential equations[M].Amsterdam:Elsevier B V,2006.
  • 4PODLUBNY I.Fractional differential equations:mathematics in science and engineering[M].New York:Academic Press,1999.
  • 5SAMKO S G,KIBAS A A,Marichev O I.Fractional integral and derivatives(theory and applications)[M].Switzerland:Gordon and Breach,1993.
  • 6SU X.Boundary value problem for a coupled system of nonlinear fractional differential equation[J].Applied Mathematics and Computation,2004,35(3):611-621.
  • 7XU X,JIANG D,YUAN C.Multiple positive solutions for boundary value problem of nonlinear fractional differential equation[J].Nonlinear Analysis Series A:Theory,Methods and Applications,Nonlinear Analysis,2009,71:4676-4688.
  • 8ZHANG S Q.Positive solution for boundary value problem of nonlinear fractional differential equations[J].Electronic Journal for Differential Equations,2006,36:1-12.
  • 9XIONG Y,ZHONG L W,WEI D.Existence of positive solution for boundary value problem of nonlinear fractional differential equations[J].Communications in Nonlinear Science and Numerical Simulation,2012,17:85-92.
  • 10SU X W.Boundary value problem for a coupled system of nonlinear fractional differetial equations[J].Applied Mathematics Letters,2009,22:64-69.

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部