期刊文献+

Relationship between Remotely Sensed Vegetation Change and Fracture Zones Induced by the 2008 Wenchuan Earthquake, China 被引量:5

Relationship between Remotely Sensed Vegetation Change and Fracture Zones Induced by the 2008 Wenchuan Earthquake, China
原文传递
导出
摘要 The Wenchuan earthquake triggered cascading disasters of landslides and debris flows that caused severe vegetation damage. Fracture zones can affect geodynamics and spatial pattern of vegetation damage. A segment tracing algorithm method was applied for identifying the regional fracture system through lineament extractions from a shaded digital elevation model with 25 m mesh for southern Wenchuan. Remote sensing and geographic information system techniques were used to analyze the spatiotemporal vegetation pattern. The relationship between vegetation type identified from satellite images and lineament density was used to characterize the distribution patterns of each vegetation type according to fracture zones. Broad-leaved forest, mixed forest, and farmland persist in areas with moderate lineament density. Deciduous broad-leaved and coniferous forest persists in less frac- tured areas. Shrub and meadow seem to be relatively evenly distributed across all lineament densities.Meadow, farmland, and shrub persist in the fractured areas. Changes of spatial structure and correlation between vegetation patterns before and after the earthquake were examined using semivariogram analysis of normalized difference vegetation indices derived from Landsat enhanced thematic mapper images. The sill values of the semivariograms show that the spatial heterogeneity of vegetation covers increased after the earthquake. Moreover, the anisotropic behaviors of the semivariograms coincide with the vegetation changes due to the strikes of fracture zones. The Wenchuan earthquake triggered cascading disasters of landslides and debris flows that caused severe vegetation damage. Fracture zones can affect geodynamics and spatial pattern of vegetation damage. A segment tracing algorithm method was applied for identifying the regional fracture system through lineament extractions from a shaded digital elevation model with 25 m mesh for southern Wenchuan. Remote sensing and geographic information system techniques were used to analyze the spatiotemporal vegetation pattern. The relationship between vegetation type identified from satellite images and lineament density was used to characterize the distribution patterns of each vegetation type according to fracture zones. Broad-leaved forest, mixed forest, and farmland persist in areas with moderate lineament density. Deciduous broad-leaved and coniferous forest persists in less frac- tured areas. Shrub and meadow seem to be relatively evenly distributed across all lineament densities.Meadow, farmland, and shrub persist in the fractured areas. Changes of spatial structure and correlation between vegetation patterns before and after the earthquake were examined using semivariogram analysis of normalized difference vegetation indices derived from Landsat enhanced thematic mapper images. The sill values of the semivariograms show that the spatial heterogeneity of vegetation covers increased after the earthquake. Moreover, the anisotropic behaviors of the semivariograms coincide with the vegetation changes due to the strikes of fracture zones.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2013年第2期282-296,共15页 地球科学学刊(英文版)
基金 supported by the International Cooperation and Exchange Program of China (No. 31211130305) theYouth Talent Team Program of Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (No.SDSQB-2012-01)
关键词 fracture zone vegetation pattern LINEAMENT remote sensing GEOSTATISTICS fracture zone vegetation pattern lineament remote sensing geostatistics
  • 相关文献

参考文献2

二级参考文献6

共引文献74

同被引文献50

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部