期刊文献+

北京地区三元杂交猪胴体的分级优化

Optimization of Carcass Grading of Sanyuan Crossbred Pigs in Beijing
下载PDF
导出
摘要 为了提高猪胴体分级的准确性,利用计算机视觉技术、图像处理技术及统计分析方法,对已建立的猪胴体分级标准及预测方程进行修订。结果表明:以左半胴体质量、臀中肌横长和臀中肌膘厚预测瘦肉率绝对误差小于4%;同时以瘦肉率、臀中肌膘厚、1/2横长处膘厚及6~7肋处膘厚等特征作为分级主要参数,使分级准确率达90%。将各处膘厚与瘦肉率相结合,并对猪胴体级别根据实际需求进行调整,可使分级工作更加合理,准确性也有提高。 To increase the accuracy of pig carcass grading, computer vision technology, image processing technology and statistical methods were used to modify the established pig carcass grading standard and prediction equations. An absolute error smaller than 4% was obtained from lean percentage predications based on half carcass weight, gluteus medium length and gluteus medium fat thickness. The accuracy of carcass grading obtained using lean meat percentage, gluteus medium fat thickness, mid-body fat thickness and rib 6--7 fat thickness as evaluation parameters was 90%. In conclusion, more reasonable and more accurate carcass grading can be achieved when using fat thickness in different carcass parts and lean percentage as evaluation parameters and making practical modifications to the carcass grades.
出处 《肉类研究》 2013年第2期1-4,共4页 Meat Research
基金 "十二五"国家科技支撑计划项目(2012BAK17B09 2012BAD28B02) 国家生猪产业体系北京市创新团队项目
关键词 猪胴体 计算机视觉 分级标准 瘦肉率 膘厚 pig carcass computer vision grading standard lean meat percentage fat thickness
  • 相关文献

参考文献13

  • 1高莉,郑丽敏,尹健玲,任发政,朱虹,吴平,田立军,任兴超,王凯.我国屠宰企业猪胴体分级技术的研究进展与建议[J].肉类研究,2009,23(4):3-6. 被引量:7
  • 2张楠,周光宏,徐幸莲.国内外猪胴体分级标准体系的现状与发展趋势[J].食品与发酵工业,2005,31(7):86-89. 被引量:15
  • 3李诚.猪肉的分级、分割及分割肉加工[J].肉类工业,2003(3):5-7. 被引量:7
  • 4李业国,高峰,周光宏,岳新叶,陈银基,骆桂兰.地方猪种胴体瘦肉率预测及分级指标筛选[J].江苏农业科学,2006,34(3):122-125. 被引量:5
  • 5ENGEL B, LAMBOOIJ E, BUIST W G, et al. Predition of the percentage lean of pig carcasses with a small or a large number of instrumental carcass measurements: an illustration with HGP and vision[J]. Animal Science, 2006, 82: 919-928.
  • 6ENGEL B, LAMBOOIJ E, BUIST W G, et al. Lean meat prediction with HGP, CGM and CSB-Image-Meater, with prediction accuracy evaluated for different proportions of gilts, boars and castrated boars in the pig population[J]. Meat Science, 2012, 90: 338-344.
  • 7JIA Jiancheng, SCHINCKEL A P, FORREST J C, et al. Prediction of lean and fat composition in swine carcasses from ham areameasurements with image analysis[J]. Meat Science, 2010, 85: 240-244.
  • 8CHEN Yieshiung, CHEN Wenshyan. FOM carcass grading system applied to a commercial slaughter line four predicting pork cutability and quality[J]. Journal of Taiwan Livestock Reasearch, 1998, 31(3): 273-278.
  • 9任兴超,郑丽敏,任发政,朱虹,吴平,田立军,王凯.北京地区三元杂交猪胴体分级标准探索[J].肉类研究,2010,24(9):42-44. 被引量:1
  • 10任兴超.基于三维重建技术的猪胴体等级评定系统研究与应用[D].北京:中国农业大学,2010.

二级参考文献38

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部