期刊文献+

粗糙集和贝叶斯网络融合故障诊断方法 被引量:5

Research on one fusion fault diagnosis method based on rough set theory and bayesian network
下载PDF
导出
摘要 融合贝叶斯网络和粗糙集对不确定故障诊断的优势,以及粗糙集对冗余信息的处理能力,给出了一种粗糙集和贝叶斯网络进行融合的装备故障诊断方法,获得最小属性集的贝叶斯网络故障诊断模型及诊断规则,并应用于某型机载电台装备中进行验证,结果表明该方法不仅有效,而且得到的诊断规则也比单纯应用贝叶斯网络要优。 There are uncertain fault diagnosis advantages of Bayesian network and rough sets theory, and rough sets theory also has the processing ability of redundant information, so one fusion fault diagnosis method based on rough sets theory and Bayesian network was given, and the Bayesian Network fault diagnosis model of minimal attribution set and the diagnosis rules were obtained. Then, the method was applied to some aero radio equipment for fault diagnosis, and the results indicated that it was effective and the obtained diagnosis rules was better than the pure Bayesian network rules.
出处 《舰船科学技术》 北大核心 2013年第3期91-93,共3页 Ship Science and Technology
基金 国家自然科学基金资助项目(60802088)
关键词 粗糙集 贝叶斯网络 故障诊断 rough sets theory Bayesian networks fault diagnosis
  • 相关文献

参考文献2

二级参考文献9

  • 1Poole D. Logical framework for default reasoning [J]. Artificial Intelligence, 1988, 36(1): 27-47.
  • 2Mollestad T, Skowron A. Rough set framework for data mining of propositional default rules [A]. Proc. of 9th International Symposium on Methodologies of Intelligent System, ISMIS'96[C], 1996.
  • 3Pawlak Z. Rough sets [J]. International Journal of Information and Computer Science, 1982, 11(5): 341-356.
  • 4Pawlak Z, Grzymala-Busse J, Slowinski R, et al. Rough sets [J]. Communications of the ACM, 1995, 38(11): 89-95.
  • 5Pawlak Z. Rough sets and intelligent data analysis [J]. Information Sciences, 2002, 147(1-4): 1-12.
  • 6Skowmn A, Rauszer C. The discernibility matrices and functions in information system [A]. Slowinski R. Intelligent Decision Support -Handbook of Applications and Advances of the Rough Sets Theory [C]. Dordrecht: Kluwer Academic Publishers, 1992.
  • 7Pawlak Z. Rough sets, decision algorithms and Bayes' theorem [J]. European Journal of Operational Research, 2002, 136(1):181-189.
  • 8李永敏,朱善君,陈湘晖,张岱崎,韩曾晋.基于粗糙集理论的数据挖掘模型[J].清华大学学报(自然科学版),1999,39(1):110-113. 被引量:109
  • 9束洪春,孙向飞,司大军.电力变压器故障诊断专家系统知识库建立和维护的粗糙集方法[J].中国电机工程学报,2002,22(2):31-35. 被引量:74

共引文献49

同被引文献40

  • 1王广彦,马志军,胡起伟.基于贝叶斯网络的故障树分析[J].系统工程理论与实践,2004,24(6):78-83. 被引量:98
  • 2聂文广,刘惟一,杨运涛,杨明.基于信息论的Bayesian网络结构学习算法研究[J].计算机应用,2005,25(1):1-3. 被引量:6
  • 3LIU Xing,The theory & technique for comlex system model- ing[M]. Beijing: Science press ,2008:197.
  • 4CAMPOS L M. A scoring function for learning Bayesian networks based on mutual information and conditional independence tests [ J ]. Journal of Machine Learning Research, 2006 ( 7 ) : 2149 - 2187.
  • 5GUROVSKII M Z, BIDYUK P I, TERENT' EV A N. Methods of constructing bayesian based on scoring functions [ J]. Cybermetics and System Analysis, 2008,44 ( 2 ) : 219 - 224.
  • 6CHANG R, WANG W. Novel algorithm for bayesian network parameter learning with informative prior constraints [ C ]//Proc. of the International Joint Conference on Neural Networks ,2010 : 1 - 8.
  • 7RAMONI M, SEBAST1ANI P. Robust learning with missing data[J]. Machine Learning ,2001 ( 45 ) : 147 - 170.
  • 8HANJ,MICHELINEK.数据挖掘:概念和技术(第二版)[M].北京:机械工业出版社,2011.
  • 9周忠宝,董豆豆,冯静,周经伦.存在房形事件的故障树向贝叶斯网络的转化[J].哈尔滨工业大学学报,2008,40(6):1001-1004. 被引量:2
  • 10胡涛,黎放,胡志刚,王树宗.基于物元贝叶斯网络的舰船战损评估模型研究[J].舰船科学技术,2008,30(6):99-103. 被引量:2

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部